Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T01:05:07.765Z Has data issue: false hasContentIssue false

Glacial geomorphology and cosmogenic 10Be and 26Al exposure ages in the northern Dufek Massif, Weddell Sea embayment, Antarctica

Published online by Cambridge University Press:  03 April 2012

Dominic A. Hodgson*
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Michael J. Bentley
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK Department of Geography, University of Durham, South Road, Durham, DH1 3LE, UK
Christoph Schnabel
Affiliation:
NERC Cosmogenic Isotope Analysis Facility, Scottish Universities Environmental Research Centre (SUERC), Rankine Avenue, East Kilbride, G75 0QF, UK
Andreas Cziferszky
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Peter Fretwell
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Peter Convey
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Sheng Xu
Affiliation:
Scottish Universities Environmental Research Centre (SUERC), Rankine Avenue, East Kilbride, G75 0QF, UK

Abstract

We studied the glacial geomorphology and geochronology of two ice-free valleys in the Dufek Massif (Antarctic Specially Protected Area 119) providing new constraints on past ice sheet thickness in the Weddell Sea embayment. 10Be and 26Al cosmogenic surface exposure dating provided chronological control. Seven glacial stages are proposed. These include an alpine glaciation, with subsequent (mid-Miocene?) over-riding by a warm-based ice sheet. Subsequent advances are marked by a series of minor drift deposits at 760 m altitude at > 1 Ma, followed by at least two later ice sheet advances that are characterized by extensive drift sheet deposition. An advance of plateau ice field outlet glaciers from the south postdated these drift sheets. The most recent advance involved the cold-based expansion of the ice sheet from the north at the Last Glacial Maximum, or earlier, which deposited a series of bouldery moraines during its retreat. This suggests at most a relatively modest expansion of the ice sheet and outlet glaciers dominated by a lateral ice expansion of just 2–3 km and maintaining a thickness similar to that of the northern ice sheet front. These observations are consistent with other reports of modest ice sheet thickening around the Weddell Sea embayment during the Last Glacial Maximum.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altmaier, M., Herpers, U., Delisle, G., Merchel, S.Ott, U. 2010. Glaciation history of Dronning Maud Land (Antarctica) reconstructed from in situ produced cosmogenic 10Be, 26Al, 21Ne. Polar Science, 4, 4261.CrossRefGoogle Scholar
Aughenbaugh, N., Neuburg, H.Walker, P. 1958. Ellsworth Station glaciological and geological data. Report 825-1-Part I, USNC-IGY Antarctic Glaciological Data Field Work 1957 and 1958. Columbus, OH: Ohio State University Research Foundation.Google Scholar
Balco, G., Stone, J., Lifton, N.Dunai, T. 2008. A simple, internally consistent, and easily accessible means of calculating surface exposure ages and erosion rates from Be-10 and Al-26 measurements. Quaternary Geochronology, 3, 174195.CrossRefGoogle Scholar
Bassett, S.E., Milne, G.A., Bentley, M.J.Huybrechts, P. 2007. Modelling Antarctic sea level data to explore the possibility of a dominant Antarctic contribution to meltwater pulse IA. Quaternary Science Reviews, 26, 21132127.CrossRefGoogle Scholar
Behrendt, J.C., Henderson, J.R., Meister, L.Rambo, W.K. 1974. Geophysical investigations of the Pensacola Mountains and adjacent glacierized areas of Antarctica. United States Geological Survey, Professional Report, 844.Google Scholar
Bentley, M.J. 1999. Volume of Antarctic ice at the Last Glacial Maximum, and its impact on global sea level change. Quaternary Science Reviews, 18, 15691595.CrossRefGoogle Scholar
Bentley, M.J., Fogwill, C.J., Kubik, P.W.Sugden, D.E. 2006. Geomorphological evidence and cosmogenic 10Be/26Al exposure ages for the Last Glacial Maximum and deglaciation of the Antarctic Peninsula ice sheet. Geological Society of America Bulletin, 118, 11491159.CrossRefGoogle Scholar
Bentley, M.J., Fogwill, C.J., Le Brocq, A.M., Hubbard, A.L., Sugden, D.E., Dunai, T.Freeman, S.P.H.T. 2010. Deglacial history of the West Antarctic ice sheet in the Weddell Sea embayment: constraints on past ice volume change. Geology, 38, 411414.CrossRefGoogle Scholar
Bierman, P.R., Marsella, K.A., Patterson, C., Davis, P.T.Caffee, M. 1999. Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnestoa and southern Baffin Island: a multiple nuclide approach. Geomorphology, 27, 2539.CrossRefGoogle Scholar
Bockheim, J.G. 2002. Landform and soil development in the McMurdo Dry Valleys, Antarctica: a regional synthesis. Arctic, Antarctic and Alpine Research, 34, 308317.CrossRefGoogle Scholar
Boyer, S.J. 1979. Glacial geological observations in the Dufek Massif and Forrestal Range, 1978-79. Antarctic Journal of the United States, 14(5), 4648.Google Scholar
Chmeleff, J., von Blanckenburg, F., Kossert, K.Jakob, D. 2010. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 268, 192199.CrossRefGoogle Scholar
Clark, P.U.Mix, A.C. 2002. Ice sheets and sea level of the Last Glacial Maximum. Quaternary Science Reviews, 21, 17.CrossRefGoogle Scholar
Conway, H., Hall, B.L., Denton, G.H., Gades, A.M.Waddington, E.M. 1999. Past and future grounding line retreat of the West Antarctic ice sheet. Science, 286, 280283.CrossRefGoogle ScholarPubMed
Davis, C.H., Li, Y., McConnell, J.R., Frey, M.M.Hanna, E. 2005. Snowfall-driven growth in East Antarctic ice sheet mitigates recent sea level rise. Science, 308, 18981901.CrossRefGoogle ScholarPubMed
Denton, G.H.Hughes, T.J. 2002. Reconstructing the Antarctic ice sheet at the Last Glacial Maximum. Quaternary Science Reviews, 21, 193202.CrossRefGoogle Scholar
Denton, G.H., Armstrong, R.L.Stuiver, M. 1971. The late Cenozoic glacial history of Antarctica. In Turekian, K.K., ed. The late Cenozoic glacial ages. New Haven: Yale University Press, 267306.Google Scholar
Denton, G.H., Bockheim, J.G., Rutford, R.H.Andersen, B.G. 1992. Glacial history of the Ellsworth Mountains, West Antarctica. Geological Society of America Memoir, 170, 403432.CrossRefGoogle Scholar
Evans, D.J.A., ed. 2003. Glacial landsystems. London: Arnold, 532 pp.Google Scholar
Fernandez-Carazo, R., Hodgson, D.A., Convey, P.Wilmotte, A. 2011. Low cyanobacterial diversity in biotopes of the Transantarctic Mountains (80–82°S), Antarctica. FEMS Microbiology Ecology, 77, 503517.CrossRefGoogle ScholarPubMed
Ferris, J., Johnson, A.Storey, B. 1998. Form and extent of the Dufek intrusion, Antarctica, from newly compiled aeromagnetic data. Earth and Planetary Science Letters, 154, 185202.CrossRefGoogle Scholar
Fogwill, C.J., Bentley, M.J., Sugden, D.E., Kerr, A.R.Kubik, P.W. 2004. Cosmogenic nuclides 10Be and 26Al imply limited Antarctic ice sheet thickening and low erosion in the Shackleton Range for >1 m.y. Geology, 32, 265268.CrossRefGoogle Scholar
Ford, A.B. 1976. Stratigraphy of the layered gabbroic Dufek intrusion, Antarctica: contributions to stratigraphy. Geological Survey Bulletin 1405-D, 36 pp.Google Scholar
Ford, A.B. 1990. The Dufek intrusion of Antarctica. Antarctic Research Series, 51, 1532.CrossRefGoogle Scholar
Ford, A.B., Schmidt, D.L.Boyd, W.W. 1978. Geologic map of the Davis Valley quadrangle and part of the Cordiner Peaks quadrangle, Pensacola Mountains, Antarctica. United States Antarctic Research Program, Map A-10, 1:250 000. Reston, VA: US Geological Survey.Google Scholar
Gosse, J.C.Phillips, F.M. 2001. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews, 20, 14751560.CrossRefGoogle Scholar
Hein, A.S., Fogwill, C.J.Sugden, D.E.Xu, S. 2011. Glacial/interglacial ice-stream stability in the Weddell Sea embayment, Antarctica. Earth and Planetary Science Letters, 307, 211221.CrossRefGoogle Scholar
Higgins, S.M., Hendy, C.H.Denton, G.H. 2000. Geochronology of Bonney drift, Taylor Valley, Antarctica: evidence for interglacial expansions of Taylor Glacier. Geografiska Annaler, 82A, 391409.CrossRefGoogle Scholar
Hodgson, D.A., Convey, P., Verleyen, E., Vyverman, W., McIntosh, W., Sands, C.J., Fernández-Carazo, R., Wilmotte, A., De Wever, A., Peeters, K., Tavernier, I.Willems, A. 2010. The limnology and biology of the Dufek Massif, Transantarctic Mountains 82° South. Polar Science, 4, 197214.CrossRefGoogle Scholar
Höfle, H.C.Buggisch, W. 1995. Glacial geology and petrography of erratics in the Shackleton Range, Antarctica. Polarforschung, 63, 183201.Google Scholar
Kerr, A.Hermichen, W.D. 1999. Glacial modification of the Shackleton Range, Antarctica. Terra Antartica, 6, 353360.Google Scholar
Kessler, M.A.Werner, B.T. 2003. Self-organization of sorted patterned ground. Science, 299, 380383.CrossRefGoogle ScholarPubMed
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U.C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., von Gostomski, L., Kossert, K., Maiti, M., Poutivtsev, M.Remmert, A. 2010. A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting. Nuclear Instruments and Methods B, 268, 187.CrossRefGoogle Scholar
Lewis, A.R., Marchant, D.R., Ashworth, A.C., Hedenas, L., Hemming, S.R., Johnson, J.V., Leng, M.J., Machlus, M.L., Newton, A.E.Raine, J.I. 2008. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proceedings of the National Academy of Sciences of the United States of America, 105, 10 67610 680.CrossRefGoogle ScholarPubMed
Mackintosh, A., White, D., Fink, D., Gore, D.B., Pickard, J.Fanning, P.C. 2007. Exposure ages from mountain dipsticks in Mac. Robertson Land, East Antarctica, indicate little change in ice sheet thickness since the Last Glacial Maximum. Geology, 35, 551554.CrossRefGoogle Scholar
Moriwaki, K. 1992. Late Cenozoic glacial history in the Sør-Rondane Mountains, East Antarctica. In Yoshida,Y., Kaminuma, K.&Shiraishi, K., eds. Recent progress in Antarctic earth science. Tokyo: Terra Scientific, 661667.Google Scholar
Nishiizumi, K. 2004. Preparation of 26Al standards. Nuclear Instruments and Methods in Physics Research B, 223, 388392.CrossRefGoogle Scholar
Nishiizumi, K., Winterer, E.L., Kohl, C.P., Klein, J., Middleton, R., Lal, D.Arnold, J.R. 2007. Absolute calibration of Be-10 AMS standards. Nuclear Instruments and Methods in Physics Research B, 258, 403413.CrossRefGoogle Scholar
Peeters, K., Hodgson, D.A., Convey, P.Willems, A. 2011a. Culturable diversity of heterotrophic bacteria in Forlidas Pond (Pensacola Mountains) and Lundström Lake (Shackleton Range), Antarctica. Microbial Ecology, 62, 399413.CrossRefGoogle ScholarPubMed
Peeters, K., Verleyen, E., Hodgson, D.A., Convey, P., Ertz, D., Vyverman, W.Willems, A. 2011b. Heterotrophic bacterial diversity in aquatic microbial mat communities from Antarctica. Polar Biology, 10.1007/s00300-00011-01100-00304.CrossRefGoogle Scholar
Shevenell, A.E., Kennett, J.P.Lea, D.W. 2004. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science, 305, 17661770.CrossRefGoogle ScholarPubMed
Stone, J.O., Balco, G.A., Sugden, D.E., Caffee, M.W., Sass, L.C., Cowdery, S.G.Siddoway, C. 2003. Holocene deglaciation of Marie Byrd Land, West Antarctica. Science, 299, 99102.CrossRefGoogle ScholarPubMed
Summerfield, M.A., Stuart, F.M., Cockburn, H.A.P., Sugden, D.E., Denton, G.H., Dunai, T.Marchant, D.R. 1999. Long-term rates of denudation in the Dry Valleys, Transantarctic Mountains, southern Victoria Land, Antarctica, based on in-situ-produced cosmogenic 21Ne. Geomorphology, 27, 113129.CrossRefGoogle Scholar
Van den Broeke, M., van de Berg, W.J., van Meijgaard, E.Reijmer, C. 2006. Identification of Antarctic ablation areas using a regional atmospheric climate model. Journal of Geophysical Research, 10.1029/2006JD007127.CrossRefGoogle Scholar
Van Lipzig, N.P.M., Turner, J., Colwell, S.R.van Den Broeke, M.R. 2004. The near-surface wind field over the Antarctic continent. International Journal of Climatology, 24, 19731982.CrossRefGoogle Scholar
Supplementary material: File

Hodgson Supplementary Material

Supplementary Material.doc

Download Hodgson Supplementary Material(File)
File 46.1 KB