Skip to main content Accessibility help
×
Home

A comparison of Arctic and Antarctic climate change, present and future

  • John E. Walsh (a1)

Abstract

Ongoing climate variations in the Arctic and Antarctic pose an apparent paradox. In contrast to the large warming and loss of sea ice in the Arctic in recent decades, Antarctic temperatures and sea ice show little change except for the Antarctic Peninsula. However, model simulations indicate that the Arctic changes have been shaped largely by low-frequency variations of the atmospheric circulation, superimposed on a greenhouse warming that is apparent in model simulations when ensemble averages smooth out the circulation-driven variability of the late 20th century. By contrast, the Antarctic changes of recent decades appear to be shaped by ozone depletion and an associated strengthening of the southern annular mode of the atmospheric circulation. While the signature of greenhouse-driven change is projected to emerge from the natural variability during the present century, the emergence of a statistically significant greenhouse signal may be slower than in other regions. Models suggest that feedbacks from retreating sea ice will make autumn and winter the seasons of the earliest emergence of the greenhouse signal in both Polar Regions. Priorities for enhanced robustness of the Antarctic climate simulations are the inclusion of ozone chemistry and the realistic simulation of water vapour over the Antarctic Ice Sheet.

Copyright

Corresponding author

Footnotes

Hide All

Keynote presentation at the SCAR/IASC Open Science Conference, St Petersburg, Russia, 2008.

Footnotes

References

Hide All
Arblaster, J. & Meehl, G.A. 2006. Contribution of external forcings to Southern Annular Mode trends. Journal of Climate, 19, 28962905.
Chapman, W.L. & Walsh, J.E. 2007a. A synthesis of Antarctic temperatures. Journal of Climate, 20, 40964117.
Chapman, W.L. & Walsh, J.E. 2007b. Simulation of Arctic temperature and pressure by global coupled models. Journal of Climate, 20, 609632.
IPCC (Intergovernmental Panel on Climate Change). 2007. Climate change 2007: the physical science basis. Working Group I contribution to the Fourth Assessment Report of the IPCC. Cambridge: Cambridge University Press, 1099 pp.
Kiehl, J.T., Schneider, T., Portmann, R. & Solomon, S. 1999. Climate forcing due to tropospheric and stratospheric ozone. Journal of Geophysical Research, 104, 31 23931 254.
Miller, R.L., Schmidt, G.A. & Shindell, D.T. 2006. Forced annular variations in the 20th century. Intergovernmental Panel on Climate Change Fourth Assessment Report models. Journal of Geophysical Research, 111, 10.1029/2005JD006323.
Monaghan, A.J., Bromwich, D.H. & Schneider, D.P. 2008. Twentieth century Antarctic air temperature and snowfall simulations by IPCC climate models. Geophysical Research Letters, 35, 10.1029/2007GL032630.
Nakicenovic, N., Alcamo, J. & 26 Coauthors. 2000. IPCC Special Report on Emission Scenarios. Cambridge: Cambridge University Press, 599 pp.
Overland, J., Turner, J., Francis, J., Gillett, N., Marshall, G. & Tjernstrom, M. 2008. The Arctic and Antarctic: two faces of climate change. EOS, Transactions of the American Geophysical Union, 89, 177178.
Randel, W. & Wu, F. 1999. A stratospheric ozone trends data set for global modeling studies. Geophysical Research Letters, 26, 30893092.
Shuman, C.A. & Stearns, C.R. 2001. Decadal-length composite inland West Antarctic temperature records. Journal of Climate, 14, 19771988.
Stoner, A.M.K., Hayhoe, K. & Wuebbles, D. In press. Assessing general circulation model simulations of observed atmospheric teleconnection patterns. Part II: The North Pacific. Journal of Climate.
Stroeve, J., Serreze, M., Drobot, S., Gearheard, S., Holland, M., Maslanik, J., Meier, W. & Scambos, T. 2008. Arctic sea ice extent plummets in 2007. EOS, Transactions of the American Geophysical Union, 89, 1314.
Thompson, D.W.J. & Solomon, S. 2002. Interpretation of recent Southern Hemisphere climate change. Science, 296, 895899.
Thompson, D.W.J. & Wallace, J.M. 1998. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25, 12971300.
Walsh, J.E. 2008. Simulations of present Arctic climate and future regional projections. In Kane, D.L. & Hinkel, K.M., eds. Ninth International Conference on Permafrost, University of Alaska, Fairbanks. United States Permafrost Association, 19111916.
Wang, M., Overland, J.E., Kattsov, V., Walsh, J.E., Zhang, X. & Pavlova, T. 2007. Intrinsic versus forced variability in coupled climate model simulations over the Arctic during the twentieth century. Journal of Climate, 20, 10931107.
WMO (World Meteorological Organization). 2003. Scientific assessment of ozone depletion: 2002. Global Ozone Research and Monitoring Project. World Meteorological Organization, Report No. 47, 498 pp.
Worley, S.J., Woodruff, S.D., Reynolds, R.W., Lubker, S.J. & Lott, N. 2005. ICOADS Release 2.1 data and products. International Journal of Climatology, 25, 823842.

Keywords

A comparison of Arctic and Antarctic climate change, present and future

  • John E. Walsh (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed