Skip to main content Accessibility help
×
Home

Article contents

The polar cusp ionosphere: a window on solar wind–magnetosphere coupling

Published online by Cambridge University Press:  14 May 2004

Mark Saunders
Affiliation:
Blackett Laboratory, Imperial College of Science, Technology and Medicine, London SW7 2BZ, UK

Abstract

The polar cusp ionosphere is an important part of near-Earth space which is best monitored by ground-based observations made in the remote polar regions. Antarctica seems certain to play a key role in its future exploration. The region is characterized by the direct entry of solar wind particles along magnetic field lines projecting to the dayside magnetopause (outer boundary of the magnetosphere). Thus the polar cusp ionosphere provides a splendid window for examining processes transferring solar wind mass and momentum to the magnetosphere. The review will emphasize this aspect of polar cusp ionosphere research, an area where the pace of recent work has been rapid. New results highlight the relevance of both the interplanetary magnetic field direction and changes in solar wind pressure for dynamic effects in the polar cusp ionosphere. These phenomena include surges in plasma flow, auroral activity, magnetic impulses and field-aligned (Birkeland) currents. Among the theoretical advances emerging just this past year are ones for the origin of plasma transport in the dayside polar ionosphere and for the source of the dayside Region 1 and cusp Birkeland currents.

Type
Review
Copyright
© Antarctic Science Ltd 1989

Access options

Get access to the full version of this content by using one of the access options below.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 29 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 28th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-4dk4j Total loading time: 0.415 Render date: 2021-01-28T00:13:35.787Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The polar cusp ionosphere: a window on solar wind–magnetosphere coupling
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The polar cusp ionosphere: a window on solar wind–magnetosphere coupling
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The polar cusp ionosphere: a window on solar wind–magnetosphere coupling
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *