Skip to main content Accessibility help
×
Home

Vegetation phenology in Greenland and links to cryospheric change

  • Jeffery A. Thompson (a1) (a2) and Lora S. Koenig (a2)

Abstract

Recent greening of vegetation across the Arctic is associated with warming temperatures, hydrologic change and shorter snow-covered periods. Here we investigated trends for a subset of arctic vegetation on the island of Greenland. Vegetation in Greenland is unique due to its close proximity to the Greenland Ice Sheet and its proportionally large connection to the Greenlandic population through the hunting of grazing animals. The aim of this study was to determine whether or not longer snow-free periods (SFPs) were causing Greenlandic vegetation to dry out and become less productive. If vegetation was drying out, a subsequent aim of the study was to determine how widespread the drying was across Greenland. We utilized a 15-year time-series obtained by the MODerate Resolution Imaging Spectroradiometer (MODIS) to analyze the Greenland vegetation by deriving descriptors corresponding with the SFP, the number of cumulative growing degree-days and the time-integrated Normalized Difference Vegetation Index. While the productivity of most vegetated areas increased in response to longer growing periods, there were localized regions that exhibited signs consistent with the drying hypothesis. In these areas, vegetation productivity decreased in response to longer SFPs and more accumulated growing degree-days.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Vegetation phenology in Greenland and links to cryospheric change
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Vegetation phenology in Greenland and links to cryospheric change
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Vegetation phenology in Greenland and links to cryospheric change
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
Andersen, T and Poppel, B (2002) Living conditions in the Arctic. Soc. Indic. Res., 58(1–3), 191216 (doi: 10.1023/A:1015787901370)
Beck, PSA and Goetz, SJ (2011) Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett., 6(4), 10pp (doi: 10.1088/1748-9326/6/4/045501)
Bhatt, US and 10 others (2010) Circumpolar Arctic tundra vegetation change is linked to Sea Ice decline. Earth Interact., 14, (doi: 10.1175/2010ei315.1)
Bhatt, US and 8 others (2013) Recent declines in warming and vegetation greening trends over Pan-Arctic Tundra. Remote Sens., 5(9), 42294254 (doi: 10.3390/rs5094229)
Budyko, MI (1974). Climate and life. Academic Press, New York
Callaghan, TV, Christensen, TR and Jantze, EJ (2011) Plant and vegetation dynamics on Disko Island, West Greenland: snapshots separated by over 40 years. Ambio, 40(6), 624637 (doi: 10.1007/s13280-011-0169-x)
Carroll, ML, Townshend, JR, DiMiceli, CM, Noojipady, P and Sohlberg, RA (2009) A new global raster water mask at 250 m resolution. Int. J. Digit. Earth, 2(4), 291308 (doi: 10.1080/17538940902951401)
Carroll, ML, Wooten, M, DiMiceli, C, Sohlberg, R and Kelly, M (2016) Quantifying surface water dynamics at 30 meter spatial resolution in the North American high northern latitudes 1991–2011. Remote Sens., 8(8), 14pp (doi: 10.3390/rs8080622)
Coll, C and 6 others (2005) Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sens. Environ., 97(3), 288300 (doi: 10.1016/j.rse.2005.05.007)
Daniëls, FJA and de Molenaar, JG (2011) Flora and vegetation of Tasiilaq, formerly Angmagssalik, Southeast Greenland: a comparison of data between around 1900 and 2007. Ambio, 40(6), 650659 (doi: 10.1007/s13280-011-0171-3)
Daniëls, FJA, de Molenaar, JG, Chytry, M and Tichy, L (2011) Vegetation change in Southeast Greenland? Tasiilaq revisited after 40 years. Appl. Veg. Sci., 14(2), 230241 (doi: 10.1111/j.1654-109X.2010.01107.x)
Derksen, C and Brown, R (2012) Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophys. Res. Lett., 39(L19504), 6pp (doi: 10.1029/2012GL053387)
Déry, SJ and Brown, RD (2007) Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophys. Res. Lett., 34, L22504 (doi: 10.1029/2007GL031474)
Dozier, J (1989) Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens. Environ., 28, 922 (doi: 10.1016/0034-4257(89)90101-6)
Ellebjerg, SM, Tamstorf, MP, Illeris, L, Michelsen, A and Hansen, BU (2008) Inter-annual variability and controls of plant phenology and productivity at Zackenberg. Adv. Ecol. Res., 40: 249273 (doi: 10.1016/S0065-2504(07)00011-6)
Enderlin, EM and 5 others (2014) An improved mass budget for the Greenland Ice Sheet. Geophys. Res. Lett., 41(3), 866872 (doi: 10.1002/2013GL059010)
Francis, JA and Hunter, E (2006) New insight into the disappearing Arctic sea ice. EOS (Washington. DC), 87(46), 509511 (doi: 10.1029/2006EO460001)
Graversen, RG, Mauritsen, T, Tjernstrom, M, Kallen, E and Svensson, G (2008) Vertical structure of recent Arctic warming. Nature, 451(7174), 53-U54 (doi: 10.1038/nature06502)
Hall, DK and Riggs, GA (2007) Accuracy assessment of the MODIS snow products. Hydrol. Processes, 21(12), 15341547 (doi: 10.1002/hyp.6715)
Hall, DK, Riggs, GA, Salomonson, VV, DiGirolamo, NE and Bayr, KJ (2002) MODIS snow-cover products. Remote Sens. Environ., 83(1–2), 181194 (doi: 10.1016/S0034-4257(02)00095-0)
Hall, DK and 5 others (2013) Variability in the surface temperature and melt extent of the Greenland Ice Sheet from MODIS. Geophys. Res. Lett., 40(10), 21142120 (doi: 10.1002/grl.50240)
Haran, T, Bohlander, J, Scambos, T, Painter, TH and Fahnestock, M (2013) MEaSUREs MODIS Mosaic of Greenland 2005 (MOG2005) Image Map, version 1. NSIDC, Boulder, Colorado, USA
Higuera, PE and 5 others (2008) Frequent fires in ancient shrub tundra: implications of paleorecords for Arctic environmental change. PLoS ONE, 3(3), e0001744 (doi: 10.1371/journal.pone.0001744)
Howat, IM, Negrete, A and Smith, BE (2014) The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere, 8(4), 15091518 (doi: 10.5194/tc-8-1509-2014)
Huete, AR and 5 others (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83(1–2), 195213 (doi: 10.1016/S0034-4257(02)00096-2)
Jia, GJ, Epstein, HE and Walker, DA (2009) Vegetation greening in the Canadian Arctic related to decadal warming. J. Environ. Monitor., 11(12), 22312238 (doi: 10.1039/b911677j)
Justice, CO, Holben, BN and Gwynne, MD (1986) Monitoring east-African vegetation using AVHRR data. Int. J. Remote Sens., 7(11), 14531474 (doi: 10.1080/01431168608948948)
Kahn, B (2017). Wildfire burns across (formerly) Icy Greenland: grasses and low vegetation on the defrosting, drying tundra are igniting. Scientific American, https://www.scientificamerican.com/article/wildfire-burns-across-formerly-icy-greenland/ (29 May 2018)
Kirschbaum, M and Farquhar, G (1984) Temperature dependence of whole-leaf photosynthesis in eucalyptus pauciflora Sieb. Ex Spreng. Aust. J. Plant Physiol., 1984(11), 519538 (doi: 10.1071/PP9840519)
Körner, C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115(4), 445459 (doi: 10.1007/s004420050540)
Markus, T, Stroeve, JC and Miller, J (2009) Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J. Geophys. Res. Oceans, 114, 14pp (doi: 10.1029/2009jc005436)
MathWorks (2016) MATLAB and the statistics toolbox release 2016a. The MathWorks, Inc., Natick, MA, USA
McCabe, GJ and Wolock, DM (2010) Long-term variability in Northern Hemisphere snow cover and associations with warmer winters. Clim. Change, 99(1–2), 141153 (doi: 10.1007/s10584-009-9675-2)
Myneni, RB, Keeling, CD, Tucker, CJ, Asrar, G and Nemani, RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386(6626), 698702 (doi: 10.1038/386698a0)
Myers-Smith, IH and 31 others (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett., 6(4) (doi: 10.1088/1748-9326/6/4/045509)
Nobel, PS (2009) Physicochemical and environmental plant physiology, 4th edn. Elsevier, Oxford
Pomeroy, JW and Brun, E (2001) Physical properties of snow. In Jones, HG, Pomeroy, JW, Walker, DA and Hoham, RW eds. Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, Cambridge, 45126
Pomeroy, JW, Holler, P, Marsh, P, Walker, DA and Williams, M (2001) Snow vegetation interactions: issues for a new initiative. In Soil-Vegetation-Atmosphere Transfer Schemes and Large-Scale Hydrological Models, Proceedings of a Symposium held During the Sixth IAHS Scientific Assembly, Maastricht, The Netherlands, 18–27 July 2001, 299305
Reed, BC and 5 others (1994) Measuring phenological variability from satellite imagery. J. Veg. Sci., 5(5), 703714 (doi: 10.2307/3235884)
Reed, BC, Budde, M, Spencer, P and Miller, AE (2009) Integration of MODIS-derived metrics to assess interannual variability in Snowpack, Lake Ice, and NDVI in southwest Alaska. Remote Sens. Environ., 113(7), 14431452 (doi: 10.1016/j.rse.2008.07.020)
Reed, BC, White, MA and Brown, JF (2003) Remote sensing phenology. In Schwartz MD ed. Phenology: An Integrative Environmental Science. Kluwer Academic Publisher, Dordrecht, The Netherlands 365381
Riggs, GA, Hall, DK and Salomonson, VV (2006) MODIS snow products user guide to collection 5. NASA Goddard Space Flight Center, Greenbelt, Maryland
Rittger, K, Painter, TH and Dozier, J (2013) Assessment of methods for mapping snow cover from MODIS. Adv. Water Resour., 51: 367380 (doi: 10.1016/j.advwatres.2012.03.002)
Salomonson, VV and Appel, I (2004) Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens. Environ., 89(3), 351360 (doi: 10.1016/j.rse.2003.10.016)
Screen, JA and Simmonds, I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464(7293), 13341337 (doi: 10.1038/nature09051)
Sellers, PJ (1985) Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens., 6(8), 13351372 (doi: 10.1080/01431168508948283)
Serreze, MC and 9 others (2000) Observational evidence of recent change in the northern high-latitude environment. Clim. Change, 46(1–2), 159207 (doi: 10.1023/a:1005504031923)
Shepherd, A and 47 others (2012) A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 11831189 (doi: 10.1126/science.1228102)
Smith, LC, Sheng, Y, MacDonald, GM and Hinzman, LD (2005) Disappearing Arctic lakes. Science, 308(5727), 14291429 (doi: 10.1126/science.1108142)
Solano, R, Didan, K, Jacobson, A and Huete, A (2010) MODIS vegetation indices (MOD13) C5 user's guide. The University of Arizona, Tucson, Arizona
Sturm, M, Douglas, T, Racine, C and Liston, GE (2005) Changing snow and shrub conditions affect albedo with global implications. J. Geophys. Res. Biogeo., 110(G1), (doi: 10.1029/2005jg000013)
Sturm, M and 5 others (2001) Snow-shrub interactions in Arctic tundra: a hypothesis with climatic implications. J. Clim., 14(3), 336344 (doi: 10.1175/1520-0442(2001)014<0336:ssiiat>2.0.co;2)
Thing, H (1984) Feeding ecology of the West Greenland caribou (Rangifer tarandus groenlandicus) in the Sisimiut/Kangerlussuaq region. Danish Rev. Game Biol., 12(3), 53p
Tucker, CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ., 8(2), 127150 (doi: 10.1016/0034-4257(79)90013-0)
Voiland, A (2017) Fire and ice in Greenland: natural hazards. Earth Observatory, NASA, Greenbelt, Maryland. https://earthobservatory.nasa.gov/NaturalHazards/view.php?id=90709&src=nha, (29 May 2018)
Walker, DA, Billings, WD and de Mollenaar, JG (2001) Snow-vegetation interactions in tundra environments. In Jones, HG, Pomeroy, JW, Walker, DA and Hoham, RW eds. Snow ecology: an interdisciplinary examination of snow-covered ecosystems, Cambridge University Press, Cambridge, 266324
Wan, ZM (2007) Collection-5 MODIS land surface temperature products users’ guide. ICESS, University of California, Santa Barbara
Wan, ZM (2008) New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sens. Environ., 112(1), 5974 (doi: 10.1016/j.rse.2006.06.026)
Wan, ZM and Dozier, J (1996) A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE T. Geosci. Remote, 34(4), 892905 (doi: 10.1109/36.508406)
Wan, ZM, Zhang, YL, Zhang, QC and Li, ZL (2002) Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sens. Environ., 83(1–2), 163180 (doi: 10.1016/s0034-4257(02)00093-7)
Watts, JD, Kimball, JS, Bartsch, A and McDonald, KC (2014) Surface water inundation in the boreal-Arctic: potential impacts on regional methane emissions. Environ. Res. Lett., 9(7), 14pp (doi: 10.1088/1748-9326/9/7/075001)
White, MA and 20 others (2009) Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob. Change Biol., 15(10), 23352359 (doi: 10.1111/j.1365-2486.2009.01910.x)
Wielgolaski, FE and Inouye, DW (2013) Phenology at High Latitudes. In Schwartz M ed. Phenology: An Integrative Environmental Science. Springer, Dordrecht 225247
Zwally, HJ, Giovinetto, MB, Beckley, MA and Saba, JL (2012) Antarctic and Greenland drainage systems. GSFC Cryospheric Sciences Laboratory, NASA, Greenbelt, Maryland

Keywords

Type Description Title
WORD
Supplementary materials

Thompson and Koenig supplementary material
Thompson and Koenig supplementary material 1

 Word (17.0 MB)
17.0 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed