Skip to main content Accessibility help
×
Home

The trough-system algorithm and its application to spatial modeling of Greenland subglacial topography

  • Ute C. Herzfeld (a1) (a2) (a3), Brian W. McDonald (a1) (a2), Bruce F. Wallin (a1) (a4), Phillip A. Chen (a1) (a2), Helmut Mayer (a5), John Paden (a6) and Carlton J. Leuschen (a6)...

Abstract

Dynamic ice-sheet models are used to assess the contribution of mass loss from the Greenland ice sheet to sea-level rise. Mass transfer from ice sheet to ocean is in a large part through outlet glaciers. Bed topography plays an important role in ice dynamics, since the acceleration from the slow-moving inland ice to an ice stream is in many cases caused by the existence of a subglacial trough or trough system. Problems are that most subglacial troughs are features of a scale not resolved in most ice-sheet models and that radar measurements of subglacial topography do not always reach the bottoms of narrow troughs. The trough-system algorithm introduced here employs mathematical morphology and algebraic topology to correctly represent subscale features in a topographic generalization, so the effects of troughs on ice flow are retained in ice-dynamic models. The algorithm is applied to derive a spatial elevation model of Greenland subglacial topography, integrating recently collected radar measurements (CReSIS data) of the Jakobshavn Isbræ, Helheim, Kangerdlussuaq and Petermann glacier regions. The resultant JakHelKanPet digital elevation model has been applied in dynamic ice-sheet modeling and sea-level-rise assessment.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The trough-system algorithm and its application to spatial modeling of Greenland subglacial topography
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The trough-system algorithm and its application to spatial modeling of Greenland subglacial topography
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The trough-system algorithm and its application to spatial modeling of Greenland subglacial topography
      Available formats
      ×

Copyright

References

Hide All
Bamber, JL Layberry, RL and Gogineni, SP (2001) A new ice thickness and bed dataset for the Greenland ice sheet. 1. Measurement, data reduction, and errors. J. Geophys. Res., 106(D24), (33773–33 780) (doi: 10.1029/2001JD900054)
Bamber, JL and 10 others (2013) A new bed elevation dataset for Greenland. Cryosphere, 7(2), 499510 (doi: 10.5194/tc-7-499-2013)
Bevan, SL Murray, T, Luckman, AJ Hanna, E and Hanna, E (2012) Stable dynamics in a Greenland tidewater glacier over 26 years despite reported thinning. Ann. Glaciol., 53(60 Pt 2), (241–248) (doi: 10.3189/2012AoG60A076)
Bindschadler, RA and 27 others (2013) Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project). J. Glaciol., 59(214), 195224 (doi: 10.3189/2013JoG12J125)
Farinotti, D, Huss, M, Bauder, A, Funk, M and Funk, M (2009) A method to estimate ice volume and ice-thickness distribution of alpine glaciers. J. Glaciol., 55(191), 422430 (doi: 10.3189/ 002214309788816759)
Fastook, JL (1993) The finite-element method for solving conservation equations in glaciology. Comp. Sci. Eng., 1(1), 5567
Fastook, JL and Prentice, M (1994) A finite-element model of Antarctica: sensitivity test for meteorological mass-balance relationship. J. Glaciol., 40(134), 167175
Fretwell, P and 59 others (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7(1), 375393 (doi: 10.5194/tc-7-375-2013)
Gillet-Chaulet, F and 8 others (2012) Greenland Ice Sheet contribution to sea-level rise from a new-generation ice-sheet model. Cryosphere, 6(4), 15611576 (doi: 10.5194/tc-6-1561-2012)
Goelzer, H and 8 others (2013) Sensitivity of Greenland ice sheet projections to model formulations. J. Glaciol., 59(216), 733749 (doi: 10.3189/2013JoG12J182)
Gogineni, S and 9 others (2001) Coherent radar ice thickness measurements over the Greenland ice sheet. J. Geophys. Res., 106(D24), (33761–33 772) (doi: 10.1029/2001JD900183)
Greve, R (1995) Thermomechanisches Verhalten polythermer Eisschilde – Theorie, Analytik, Numerik. (PhD thesis, Technische Hochschule Darmstadt)
Greve, R (1997) Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: response to steady-state and transient climate scenarios. J. Climate, 10(5), 901918 (doi: 10.1175/1520-0442(1997)010<0901:AOAPTD>2.0.CO;2)
Greve, R and Greve, R (2009) Dynamics of ice sheets and glaciers.. Springer, Dordrecht
Greve, R and Herzfeld, UC (2013) Resolution of ice streams and outlet glaciers in large-scale simulations of the Greenland ice sheet. Ann. Glaciol., 54(63 Pt 2), (209220) (doi: 10.3189/ 2013AoG63A085)
Hall, DK Williams, RS Jr, Luthcke, SB and Digirolamo, NE (2008) Greenland ice sheet surface temperature, melt and mass loss: 2000–2006. J. Glaciol., 54(184), 8193 (doi: 10.3189/ 002214308784409170)
Herzfeld, UC (1992) Least squares collocation, geophysical inverse theory and geostatistics: a bird's eye view. Geophys. J. Int., 111(2), 237249 (doi: 10.1111/j.1365-246X.1992.tb00573.x)
Herzfeld, UC (2004) Atlas of Antarctica: topographic maps from geostatistical analysis of satellite radar altimeter data.. Springer, Berlin
Herzfeld, UC (2008) Master of the obscure – automated geostatistical classification in presence of complex geophysical processes. Math. Geosci., 40(5), 587618 (doi: 10.1007/ s11004-008-9174-4)
Herzfeld, UC Mayer, H, Feller, W and Feller, W (1999) Glacier roughness surveys of Jakobshavns Isbræ drainage basin, West Greenland, and morphological characterization. Z. Gletscherkd. Glazialgeol., 35(2), 117146
Herzfeld, UC Mayer, H, Feller, W and Feller, W (2000) Geostatistical analysis of glacier-roughness data. Ann. Glaciol., 30, 235242 (doi: 10.3189/172756400781820769)
Herzfeld, UC Wallin, BF Leuschen, CJ and Plummer, J (2011a) An algorithm for generalizing topography to grids while preserving subscale morphologic characteristics – creating a glacier bed DEM for Jakobshavn trough as low-resolution input for dynamic ice-sheet models. Comput. Geosci., 37(11), 17931801 (doi: 10.1016/j.cageo.2011.02.021)
Herzfeld, UC Wallin, BF and Stachura, M (2011b) Applications of geostatistics in optimal design of satellite altimetry orbits and measurement configurations. J. Astronaut. Sci., 58(3), 495511 (doi: 10.1007/BF03321182)
Herzfeld, UC Fastook, J, Greve, R, McDonald, B, Wallin, BF and Chen, PA (2012) On the influence of Greenland outlet glacier bed topography on results from dynamic ice-sheet models. Ann. Glaciol., 53(60 Pt 2), (281–293) (doi: 10.3189/2012AoG60A061)
Howat, IM Joughin, I, Tulaczyk, S and Tulaczyk, S (2005) Rapid retreat and acceleration of Helheim Glacier, east Greenland. Geophys. Res. Lett., 32(22), (L22502) (doi: 10.1029/ 2005GL024737)
Johnson, JV Prescott, PR and Hughes, TJ (2004) Ice dynamics preceding catastrophic disintegration of the floating part of Jakobshavn Isbræ, Greenland. J. Glaciol., 50(171), 492504 (doi: 10.3189/172756504781829729)
Johnson, HL Muenchow, A, Falkner, KK and Melling, H (2010) Ocean circulation and properties in Petermann Fjord, Greenland. J. Geophys. Res., 116(1), (C01003) (doi: 10.1029/2010JC006519)
Joughin, I, Smith, BE Howat, IM Scambos, T and Scambos, T (2010) Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol., 56(197), 415430 (doi: 10.3189/ 002214310792447734)
Krabill, W and 8 others (1999) Rapid thinning of parts of the southern Greenland ice sheet. Science, 283(5407), 15221524 (doi: 10.1126/science.283.5407.1522)
Larour, E, Seroussi, H, Morlighem, M and Morlighem, M (2012) Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res., 117(F1), (F01022) (doi: 10.1029/2011JF002140)
Le Brocq, AM Payne, AJ and Vieli, A (2010) An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1). Earth Syst. Sci. Data, 2(2), 247260 (doi: 10.5194/essdd-3-195-2010)
Lohoefener, A (2006) Design and development of a multi-channel radar depth sounder. CReSIS Tech. Rep. 109
Mayer, H and Herzfeld, UC (2001) A structural segmentation, kinematic analysis and dynamic interpretation of Jakobshavns Isbræ, West Greenland. Z. Gletscherkd. Glazialgeol., 37(2), 107123
Mayer, H and Herzfeld, UC (2008) The rapid retreat of Jakobshavns Isbræ, West Greenland: field observations of 2005 and structural analysis of its evolution. Natur. Resour. Res., 17(3), 167179 (doi: 10.1007/s11053-008-9076-7)
Morlighem, M and 6 others (2013) High-resolution bed topography mapping of Russell Glacier, Greenland, inferred from Operation IceBridge data. J. Glaciol., 59(218), 10151023 (doi: 10.3189/ 2013JoG12J235)
Nowicki, S and 30 others (2013a) Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project I: Antarctica. J. Geophys. Res., 118(F2), 10021024 (doi: 10.1002/jgrf.20081)
Nowicki, S and 30 others (2013b) Insights into spatial sensitivities of ice mass response to environmental change from the SeaRISE ice sheet modeling project II: Greenland. J. Geophys. Res., 118(F2), 10251044 (doi: 10.1002/jgrf.20076)
Pachauri, RK and Reisinger A eds. (2007) Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.. Intergovernmental Panel on Climate Change, Geneva
Podlech, S and Podlech, S (2004) Correspondence. A catastrophic break-up of the front of Jakobshavn Isbræ, West Greenland, 2002/03. J. Glaciol., 50(168), 153154 (doi: 10.3189/ 172756504781830231)
Rasmussen, LA (1988) Bed topography and mass-balance distribution of Columbia Glacier, Alaska, U.S.A., determined from sequential aerial photography. J. Glaciol., 34(117), 208216
Rignot, E and Rignot, E (2006) Changes in the velocity structure of the Greenland Ice Sheet. Science, 311(5673), 986990 (doi: 10.1126/science.1121381)
Rignot, E and Rignot, E (2008) Channelized bottom melting and stability of floating ice shelves. Geophys. Res. Lett., 35(2), (L02503) (doi: 10.1029/2007GL031765)
Rignot, E, Fenty, I, Menemenlis, D and Menemenlis, D (2012) Spreading of warm ocean waters around Greenland as a possible cause for glacier acceleration. Ann. Glaciol., 53(60 Pt 2), (257–266) (doi: 10.3189/2012AoG60A136)
Schutz, BE Zwally, HJ Shuman, CA Hancock, D and DiMarzio, JP (2005) Overview of the ICESat Mission. Geophys. Res. Lett., 32(21), (L21S01) (doi: 10.1029/2005GL024009)
Snyder, JP (1987) Map projections: a working manual. USGS Prof. Pap. 1395
Solomon, S and 7 others eds. (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.. Cambridge University Press, Cambridge
Steffen, K and Steffen, K (2001) Surface climatology of the Greenland ice sheet: Greenland Climate Network 1995–1999. J. Geophys. Res., 106(D24), (33951–33 964) (doi: 10.1029/2001JD900161)
Sutherland, D and Sutherland, D (2012) Estimating ocean heat transports and submarine melt rates in Sermilik Fjord, Greenland, using lowered acoustic Doppler current profiler (LADCP) velocity profiles. Ann. Glaciol., 53(60 Pt 1), (5058) (doi: 10.3189/ 2012AoG60A050)
Thomas, R and 17 others (2004) Accelerated sea-level rise from West Antarctica. Science, 306(5694), 255258 (doi: 10.1126/ science.1099650)
Timmermann, R and 16 others (2010) A consistent data set of Antarctic ice sheet topography, cavity geometry, and global bathymetry. Earth Syst. Sci. Data, 2(2), 261273 (doi: 10.5194/ essd-2-261-2010)
Vaughan, DG and 13 others (2013) Observations: cryosphere. In Stocker, TF and 9 others eds. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York
Warrick, RA and Oerlemans, J (1990) Sea level rise. In Houghton, JT Jenkins, GJ and Ephraums, JJ eds. Climate change: the IPCC scientific assessment. Cambridge University Press, Cambridge, 257281
Zwally, HJ and 7 others (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol., 51(175), 509527 (doi: 10.3189/ 172756505781829007)

Keywords

The trough-system algorithm and its application to spatial modeling of Greenland subglacial topography

  • Ute C. Herzfeld (a1) (a2) (a3), Brian W. McDonald (a1) (a2), Bruce F. Wallin (a1) (a4), Phillip A. Chen (a1) (a2), Helmut Mayer (a5), John Paden (a6) and Carlton J. Leuschen (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed