Skip to main content Accessibility help
×
Home

The temperature-gradient metamorphism of snow: vapour diffusion model and application to tomographic images

  • Frédéric Flin (a1) and Jean-Bruno Brzoska (a1)

Abstract

A simple physical model describing the temperature-gradient metamorphism of snow is presented. This model, based on Kelvin’s equation and Fick’s law, takes into account the local variation of the saturating vapour pressure with temperature. It can determine locally whether the ice is condensing or subliming, depending on both the pressure and temperature fields in the snow structure. This model can also explain the formation of facets that occurs during the metamorphism. Using X-ray microtomographic images of snow samples obtained under low to moderate temperature-gradient conditions, this model has been tested and compared to the reaction-limited model proposed in a previous work.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The temperature-gradient metamorphism of snow: vapour diffusion model and application to tomographic images
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The temperature-gradient metamorphism of snow: vapour diffusion model and application to tomographic images
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The temperature-gradient metamorphism of snow: vapour diffusion model and application to tomographic images
      Available formats
      ×

Copyright

References

Hide All
Adams, E.E., Jepsen, S.M. and Close, B.. 2008. A bonding process between grains in mechanically disaggregated snow. Ann. Glaciol., 48, 6–12.
Brun, E. and Touvier, F.. 1987. Etude expérimentale de la convection thermique dans la neige. J. Phys. I [Paris], 48(C1), 257–262.
Brzoska, J.-B. and 7 others. 1999. 3D visualization of snow samples by microtomography at low temperature. ESRF Newsl. 32, 22–23.
Brzoska, J.-B., Flin, F. and Barckicke, J.. 2008. Explicit iterative computation of diffusive vapour field in the 3-D snow matrix: preliminary results for low flux metamorphism. Ann. Glaciol., 48, 13–18.
Colbeck, S.C. 1983. Theory of metamorphism of dry snow. J. Geophys. Res., 88(C9), 5475–5482.
Colbeck, S.C. 1997. A review of sintering in seasonal snow. CRREL Rep. 97–10.
Coléou, C., Lesaffre, B., Brzoska, J.-B., Ludwig, W. and Boller, E.. 2001. Three-dimensional snow images by X-ray microtomography. Ann. Glaciol., 32, 75–81.
de Quervain, M. 1963. On the metamorphism of snow. In Kingery, W.D., ed. Ice and snow: properties, processes, and applications. Cambridge, Ma, Mit Press.
de Quervain, M.R. 1973. Snow structure, heat, and mass flux through snow. IAHS Publ. 107 (Symposium at Banff 1972 – The Role of Snow and Ice in Hydrology), 203–226.
Flin, F., Brzoska, J.-B., Lesaffre, B., Coléou, C. and Pieritz, R.A.. 2003. Full three-dimensional modelling of curvature-dependent snow metamorphism: first results and comparison with experimental tomographic data. J. Phys. D, 36(10A), A49–A54.
Flin, F., Brzoska, J.-B., Lesaffre, B., Coléou, C. and Pieritz, R.A. 2004. Three-dimensional geometric measurements of snow microstructural evolution under isothermal conditions. Ann. Glaciol., 38, 39–44.
Flin, F., Brzoska, J.-B., Pieritz, R.A., Lesaffre, B., Coléou, C. and Furukawa, Y.. 2007. The temperature gradient metamorphism of snow: model and first validations using x-ray microtomographic images. In Kuhs, W.F., ed. Physics and chemistry of ice. Cambridge, Royal Society of Chemistry, 181–189.
Furukawa, Y. and Kohata, S.. 1993. Temperature dependence of the growth form of negative crystal in an ice single crystal and evaporation kinetics for its surfaces. J. Cryst. Growth, 129(3–4), 571–581.
Kaempfer, T.U., Schneebeli, M. and Sokratov, S.A.. 2005. A microstructural approach to model heat transfer in snow. Geophys. Res. Lett., 32(21), L21503. (10.1029/2005GL023873.)
Knight, C.A. 1966. Formation of crystallographic etch pits on ice, and its application to the study of hailstones. J. Appl. Meteorol., 5(5), 710–714.
Knight, C.A. and Knight, N.C.. 1965. Negative crystals in ice: a method for growth. Science, 150(3705), 1819–1821.
Legagneux, L. and Dominé, F.. 2005. A mean field model of the decrease of the specific surface area of dry snow during isothermal metamorphism. J. Geophys. Res., 110(F4), F04011. (10.1029/2004JF000181.)
Libbrecht, K.G. 2003. Growth rates of the principal facets of ice between –10C and –40C. J. Cryst. Growth, 247(3–4), 530–540.
Markov, I.V., ed. 1995. Crystal growth for beginners: fundamentals of nucleation, crystal growth, and epitaxy. Second edition. Singapore, World Scientific Publishing.
Mutaftschiev, B. 2001. The atomistic nature of crystal growth. Berlin, etc., Springer-Verlag. (Springer Series in Materials Science 43.)
Patankar, S.V. 1980. Numerical heat transfer and fluid flow. New York, Hemisphere Publishing.
Sato, A. and Kamata, Y.. 2000. Observations of depth hoar growth by time-lapse motion pictures. In Hartman, P., ed. Proceedings of the 2000 Cold Region Technology Conference. Vol. 16. Sapporo, Hokkaido Development Engineering Center, 143–147.
Sommerfeld, R.A. 1983. A branch grain theory of temperature gradient metamorphism in snow. J. Geophys. Res., 88(C2), 1484–1494.
Yosida, Z. and 6 others. 1955. Physical studies on deposited snow. I. Thermal properties. Contrib. Inst. Low Temp. Sci., Ser. A, 7, 19–74.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed