Skip to main content Accessibility help

The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica

  • S.P. Carter (a1) and H.A. Fricker (a1)


Recent satellite studies have shown that active subglacial lakes exist under the Antarctic ice streams and persist almost to their grounding lines. When the lowest-lying lakes flood, the water crosses the grounding line and enters the sub-ice-shelf cavity. Modeling results suggest that this additional freshwater influx may significantly enhance melting at the ice-shelf base. We examine the spatial and temporal variability in subglacial water supply to the grounding lines of the Siple Coast ice streams, by combining estimates for lake volume change derived from Ice, Cloud and land Elevation Satellite (ICESat) data with a model for subglacial water transport. Our results suggest that subglacial outflow tends to concentrate towards six embayments in the Siple Coast grounding line. Although mean grounding line outflow is ~60m3 s–1 for the entire Siple Coast, maximum local grounding line outflow may temporarily exceed 300 m3 s–1 during the synchronized flooding of multiple lakes in a hydrologic basin. Variability in subglacial outflow due to subglacial lake drainage may account for a substantial portion of the observed variability in freshwater flux out of the Ross Ice Shelf cavity. The temporal variability in grounding line outflow results in a net reduction in long-term average melt rate, but temporary peak melting rates may exceed the long-term average by a factor of three.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica
      Available formats



Hide All
Anandakrishnan, S and Alley, RB (1997) Stagnation of Ice Stream C, West Antarctica by water piracy. Geophys. Res. Lett., 24(3), 265–268 (doi: 10.1029/96GL04016)
Beem, LH, Jezek, KC and Van der Veen, CJ (2010) Basal melt rates beneath Whillans Ice Stream, West Antarctica. J. Glaciol., 56(198), 647–654 (doi: 10.3189/002214310793146241)
Bentley, CR and Chang, FK (1971) Geophysical exploration in Marie Byrd Land, Antarctica. In Crary, AP ed. Antarctic snow and ice studies II. American Geophysical Union, Washington, DC, 1–38 (Antarctic Research Series 16)
Bentley, CR and Ostenso, NA (1961) Glacial and subglacial topography of West Antarctica. J. Glaciol., 3(29), 882–911
Bentley, CR, Clough, JW, Jezek, KC and Shabtaie, S (1979) Ice-thickness patterns and the dynamics of the Ross Ice Shelf, Antarctica. J. Glaciol., 24(90), 287–294
Bindschadler, R. and 17 others (2011) Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year. Cryosphere, 5(3), 569–588 (doi: 10.5194/tc-5-569-2011)
Blankenship, DD, Bentley, CR, Rooney, ST and Alley, RB (1987) Till beneath Ice Stream B. 1. Properties derived from seismic travel times. J. Geophys. Res., 92(B9), 8903–8911
Blankenship, DD and 9 others (2001) Geologic controls on the initiation of rapid basal motion for West Antarctic ice streams: a geophysical perspective including new airborne radar sounding and laser altimetry results. In The West Antarctic ice sheet: behavior and environment. American Geophysical Union, Washington, DC, 105–121 (Antarctic Research Series 77)
Brunt, KM, Fricker, HA, Padman, L, Scambos, TA and O’Neel, S (2010) Mapping the grounding zone of Ross Ice Shelf, Antarctica, using ICESat laser altimetry. Ann. Glaciol., 51(55), 71–79 (doi: 10.3189/172756410791392790)
Carter, SP, Blankenship, DD, Young, DA, Peters, ME, Holt, JW and Siegert, MJ (2009) Dynamic distributed drainage implied by the flow evolution of the 1996–1998 Adventure Trench subglacial outburst flood. Earth Planet. Sci. Lett., 283(1–4), 24–37 (doi: 10.1016/j.epsl.2009.03.019)
Carter, SP and 6 others (2011) Modeling 5 years of subglacial lake activity in the MacAyeal Ice Stream (Antarctica) catchment through assimilation of ICESat laser altimetry. J. Glaciol., 57(206), 1098–1112 (doi: 10.3189/002214311798843421)
Catania, GA, Conway, H, Raymond, CF and Scambos, TA (2006) Evidence for floatation or near floatation in the mouth of Kamb Ice Stream, West Antarctica, prior to stagnation. J. Geophys. Res., 111(F1), F01005 (doi: 10.1029/2005JF000355)
Catania, GA, Hulbe, CL and Conway, HB (2010) Grounding-line basal melt rates determined using radar-derived internal stratigraphy. J. Glaciol., 56(197), 545–554
Catania, GA, Hulbe, CL, Conway, HB, Scambos, TA and Raymond, CF (2012) Variability in the mass flux of the Ross Sea ice streams, Antarctica, over the last millennium. J. Glaciol., 58(210), 741– 752 (doi: 10.3189/2012JoG11J219)
Christoffersen, P and Tulaczyk, S (2003) Response of subglacial sediments to basal freeze-on: I. Theory and comparison to observations from beneath the West Antarctic ice sheet. J. Geophys. Res., 108(B4), 2222 (doi: 10.1029/2002JB001935)
De Angelis, H and Skvarca, P (2003) Glacier surge after ice shelf collapse. Science, 299(5612), 1560–1562
Dinniman, MS, Klinck, JM and Smith, WO (2007) Influence of sea ice cover and icebergs on circulation and water mass formation in a numerical circulation model of the Ross Sea, Antarctica. J. Geophys. Res., 112(C11), C11013 (doi: 10.1029/2006JC004036)
Dupont, TK and Alley, RB (2005) Assessment of the importance of ice-shelf buttressing to ice-sheet flow. Geophys. Res. Lett., 32(4), L04503 (doi: 10.1029/2004GL022024)
Engelhardt, H, Humphrey, N, Kamb, B and Fahnestock, M (1990) Physical conditions at the base of a fast moving Antarctic ice stream. Science, 248(4951), 57–59 (doi: 10.1126/science.248. 4951.57)
Evatt, GW, Fowler, AC, Clark, CD and Hulton, NRJ (2006) Subglacial floods beneath ice sheets. Philos. Trans. R. Soc. London, Ser. A, 364(1844), 1769–1794 (doi: 10.1098/rsta.2006.1798)
Fox-Maule, C, Purucker, ME, Olsen, N and Mosegaard, K (2005) Heat flux anomalies in Antarctica revealed by satellite magnetic data. Science, 309(5733), 464–467 (doi: 10.1126/science.1106888)
Fricker, HA and Scambos, T (2009) Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003–2008. J. Glaciol., 55(190), 303–315 (doi: 10.3189/002214309788608813)
Fricker, HA, Scambos, T, Bindschadler, R and Padman, L (2007) An active subglacial water system in West Antarctica mapped from space. Science, 315(5818), 1544–1548 (doi: 10.1126/science.1136897)
Fricker, HA, Scambos, T, Carter, S, Davis, C, Haran, T and Joughin, I (2010) Synthesizing multiple remote-sensing techniques for subglacial hydrologic mapping: application to a lake system beneath MacAyeal Ice Stream, West Antarctica. J. Glaciol., 56(196), 187–199 (doi: 10.3189/002214310791968557)
Goldberg, DN, Holland, DM and Schoof, CG (2009) Grounding line movement and ice shelf buttressing in marine ice sheets. J. Geophys. Res., 114(F4), F04026 (doi: 10.1029/2008JF001227)
Gray, L, Joughin, I, Tulaczyk, S, Spikes, VB, Bindschadler, R and Jezek, K (2005) Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry. Geophys. Res. Lett., 32(3), L03501 (doi: 10.1029/2004GL021387)
Greischar, L and Bentley, CR (1980) Isostatic equilibrium grounding line between theWest Antarctic ice sheet and the Ross Ice Shelf. Nature, 283(5748), 651–654
Griggs, JA and Bamber, JL (2011) Antarctic ice-shelf thickness from satellite radar altimetry. J. Glaciol., 57(203), 485–498 (doi: 10.3189/002214311796905659)
Haran, T, Bohlander, J, Scambos, T, Painter, T and Fahnestock, M (2006) MODIS mosaic of Antarctica (MOA) image map. National Snow and Ice Data Center, Boulder, CO. Digital media:
Holland, DM and Jenkins, A (1999) Modeling thermodynamic ice– ocean interactions at the base of an ice shelf. J. Phys. Oceanogr., 29(8), 1787–1800 (doi: 10.1175/1520-0485(1999)029<1787: MTIOIA>2.0.CO;2)
Holland, DM, Jacobs, SS and Jenkins, A (2003) Modelling the ocean circulation beneath the Ross Ice Shelf. Antarct. Sci., 15(1), 13–23 (doi: 10.1017/S0954102003001019)
Holland, PR (2008) A model of tidally dominated ocean processes near ice shelf grounding lines. J. Geophys. Res., 113(C11), C11002 (doi: 10.1029/2007JC004576)
Horgan, HJ, Walker, RT, Anandakrishnan, S and Alley, RB (2011) Surface elevation changes at the front of the Ross Ice Shelf: implications for basal melting. J. Geophys. Res., 116(C2), C02005 (doi: 10.1029/2010JC006192)
Jacobs, SS, Hellmer, HH, Doake, CSM, Jenkins, A and Frolich, RM (1992) Melting of ice shelves and the mass balance of Antarctica. J. Glaciol., 38(130), 375–387
Jenkins, A (2011) Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr., 41(12), 2279–2294 (doi: 10.1175/JPO-D-11-03.1)
Jenkins, A and Bombosch, A (1995) Modeling the effects of frazil ice crystals on the dynamics and thermodynamics of ice shelf water plumes. J. Geophys. Res., 100(C4), 6967–6981
Jenkins, A and 6 others (2010a) Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nature Geosci., 3(7), 468–472 (doi: 10.1038/ngeo890)
Jenkins, A, Nicholls, KW and Corr, HFJ, (2010b) Observation and parameterization of ablation at the base of Ronne Ice Shelf, Antarctica. J. Phys. Oceanogr., 40(10), 2298–2312 (doi: 10.1175/2010JPO4317.1)
Joughin, I, Tulaczyk, S, Bindschadler, RA and Price, S (2002) Changes inWest Antarctic ice stream velocities: observation and analysis. J. Geophys. Res., 107(B11), 2289 (doi: 10.1029/2001JB001029)
Joughin, I, MacAyeal, DR and Tulaczyk, S, (2004a) Basal shear stress of the Ross ice streams from control method inversions. J. Geophys. Res., 109(B9), B09405 (doi: 10.1029/2003JB002960)
Joughin, I, Tulaczyk, S, MacAyealDand Engelhardt, H (2004b) Melting and freezing beneath the Ross ice streams, Antarctica. J. Glaciol., 50(168), 96–108 (doi: 10.3189/172756504781830295)
Le Brocq, AM, Payne, AJ and Vieli, A (2010) An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1). Earth Syst. Sci. Data, 2(2), 247–260 (doi: 10.5194/essdd-3-195-2010)
Lewis, EL and Perkin, RG (1986) Ice pumps and their rates. J. Geophys. Res., 91(C10), 11 756–11 762
Loose, B, Schlosser, P, Smethie, WM and Jacobs, S (2009) An optimized estimate of glacial melt from the Ross Ice Shelf using noble gases, stable isotopes, and CFC transient tracers. J. Geophys. Res., 114(C8), C08007 (doi: 10.1029/2008JC005048)
Lythe, MB, Vaughan, DG and BEDMAP consortium (2001) BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J. Geophys. Res., 106(B6), 11 335–11 351 (doi: 10.1029/2000JB900449)
MacAyeal, DR (1984) Thermohaline circulation below the Ross Ice Shelf: a consequence of tidally induced vertical mixing and basal melting. J. Geophys. Res., 89(C1), 597–606
Motyka, RJ, Hunter, L, Echelmeyer, KA and Connor, C (2003) Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, U.S.A. Ann. Glaciol., 36, 57–65 (doi: 10.3189/172756403781816374)
Motyka, RJ, Truffer, M, Fahnestock, M, Mortensen, J, Rysgaard, S and Howat, I (2011) Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat. J. Geophys. Res., 116(F1), F01007 (doi: 10.1029/2009JF001632)
Mueller, RD, Padman, L, Dinniman, MS, Erofeeva, SY, Fricker, HA and King, MA (2012) Impact of tide–topography interactions on basal melting of Larsen C Ice Shelf, Antarctica. J. Geophys. Res., 117(C5), C05005 (doi: 10.1029/2011JC007263)
Neal, CS (1979) The dynamics of the Ross Ice Shelf revealed by radio echo-sounding. J. Glaciol., 24(90), 295–307
Nye, JF (1976) Water flow in glaciers: jökulhlaups, tunnels and veins. J. Glaciol., 17(76), 181–207
Parizek, BR, Alley, RB and Hulbe, CL (2003) Subglacial thermal balance permits ongoing grounding-line retreat along the Siple Coast of West Antarctica. Ann. Glaciol., 36, 251–256 (doi: 10.3189/172756403781816167)
Paterson, WSB (1994) The physics of glaciers, 3rd edn. Elsevier, Oxford
Pattyn, F (2008) Investigating the stability of subglacial lakes with a full Stokes ice-sheet model. J. Glaciol., 54(185), 353–361 (doi: 10.3189/002214308784886171)
Payne, AJ, Vieli, A, Shepherd, A, Wingham, DJ and Rignot, E (2004) Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophys. Res. Lett., 31(23), L23401 (doi: 10.1029/2004GL021284)
Payne, AJ, Holland, PR, Shepherd, AP, Rutt, IC, Jenkins, A and Joughin, I (2007) Numerical modeling of ocean–ice interactions under Pine Island Bay’s ice shelf. J. Geophys. Res., 112(C10), C10019 (doi: 10.1029/2006JC003733)
Pritchard, HD, Arthern, RJ, Vaughan, DG and Edwards, LA (2009) Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461(7266), 971–975 (doi: 10.1038/nature08471)
Pritchard, HD, Ligtenberg, SRM, Fricker, HA, Vaughan, DG, Van den Broeke, MR and Padman, L (2012) Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484(7395), 502–505 (doi: 10.1038/nature10968)
Quinn, PF, Ostendorf, B, Beven, K and Tenhunen, J (1998) Spatial and temporal predictions of soil moisture patterns and evaporative losses using TOPMODEL and the GASFLUX model for an Alaskan catchment. Hydrol. Earth Syst. Sci., 2(1), 51–64 (doi: 10.5194/hess-2-51-1998)
Retzlaff, R, Lord, N and Bentley, CR (1993) Airborne-radar studies: Ice Streams A, B and C, West Antarctica. J. Glaciol., 39(133), 495–506
Rignot, E and Jacobs, SS (2002) Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science, 296(5575), 2020–2023 (doi: 10.1126/science.1070942)
Rignot, E, Casassa, G, Gogineni, P, Krabill, W, Rivera, A and Thomas, R (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett., 31(18), L18401 (doi: 10.1029/2004GL020697)
Rignot, E, Mouginot, J and Scheuchl, B, (2011a) Ice flow of the Antarctic Ice Sheet. Science, 333(6048), 1427–1430 (doi: 10.1126/science.1208336)
Rignot, E, Mouginot, J and Scheuchl, B, (2011b) Antarctic grounding line mapping from differential satellite radar interferometry. Geophys. Res. Lett., 38(10), L10504 (doi: 10.1029/2011GL047109)
Scambos, TA, Haran, TM, Fahnestock, MA, Painter, TH and Bohlander, J (2007) MODIS-based Mosaic of Antarctica (MOA) data sets: continent-wide surface morphology and snow grain size. Remote Sens. Environ., 111(2–3), 242–257 (doi: 10.1016/j.rse.2006.12.020)
Scambos, TA, Berthier, E and Shuman, CA (2011) The triggering of subglacial lake drainage during rapid glacier drawdown: Crane Glacier, Antarctic Peninsula. Ann. Glaciol., 52(59), 74–82 (doi: 10.3189/172756411799096204)
Schoof, C (2007) Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res., 112(F3), F03S28 (doi: 10.1029/2006JF000664)
Sergienko, OV and Hulbe, CL (2011) ‘Sticky spots’ and subglacial lakes under ice streams of the Siple Coast, Antarctica. Ann. Glaciol., 52(58), 18–22 (doi: 10.3189/172756411797252176)
Sergienko, OV, MacAyeal, DR and Bindschadler, RA (2007) Causes of sudden, short-term changes in ice-stream surface elevation. Geophys. Res. Lett., 34(22), L22503 (doi: 10.1029/2007GL031775)
Shapiro, NM and Ritzwoller, MH (2004) Inferring surface heat flux distribution guided by a global seismic model: particular application to Antarctica. Earth Planet. Sci. Lett., 223(1–2), 213–224 (doi: 10.1016/j.epsl.2004.04.011)
Shreve, RL (1972) Movement of water in glaciers. J. Glaciol., 11(62), 205–214
Shuman, CA, Berthier, E and Scambos, TA (2011) 2001–2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula. J. Glaciol., 57(204), 737–754 (doi: 10.3189/002214311797409811)
Smith, BE, Fricker, HA, Joughin, IR and Tulaczyk, S (2009) An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J. Glaciol., 55(192), 573–595 (doi: 10.3189/002214309789470879)
Tabacco, E, Cianfarra, P, Forieri, A, Salvini, F and Zirizzotti, A (2006) Physiography and tectonic setting of the subglacial lake district between Vostok and Belgica subglacial highlands (Antarctica). Geophys. J. Int., 165(3), 1029–1040 (doi: 10.1111/j.1365-246X.2006.02954.x)
Thomas, RH and Bentley, CR (1978) The equilibrium state of the eastern half of the Ross Ice Shelf, Antactica. J. Glaciol., 20(84), 509–518
Tulaczyk, SM, Kamb, B and Engelhardt, HF (2000) Basal mechanics of Ice Stream B, West Antarctica. II. Undrained-plastic-bed model. J. Geophys. Res., 105(B1), 483–494 (doi: 10.1029/1999JB900328)
Weertman, J (1974) Stability of the junction of an ice sheet and an ice shelf. J. Glaciol., 13(67), 3–11
Wright, AP, Siegert, MJ, Le Brocq, AM and Gore, DB (2008) High sensitivity of subglacial hydrological pathways in Antarctica to small ice-sheet changes. Geophys. Res. Lett., 35(17), L17504 (doi: 10.1029/2008GL034937)
Zwally, HJ and 7 others (2005) Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992–2002. J. Glaciol., 51(175), 509–527 (doi: 10.3189/172756505781829007)

Related content

Powered by UNSILO

The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica

  • S.P. Carter (a1) and H.A. Fricker (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.