Skip to main content Accessibility help
×
Home

Subglacial thermal balance permits ongoing grounding-line retreat along the Siple Coast of West Antarctica

  • Byron R. Parizek (a1), Richard B. Alley (a1) and Christina L. Hulbe (a2)

Abstract

Changes in the discharge of West Antarctic ice streams are of potential concern with respect to global sea level. The six relatively thin, fast-flowing Ross ice streams are of interest as low-slope end-members among Antarctic ice streams. Extensive research has demonstrated that these “rivers of ice” have a history of relatively high-frequency , asynchronous discharge variations with evolving lateral boundaries. Amidst this variability, a ∼1300 km grounding-line retreat has occurred since the Last Glacial Maximum. Numerical studies of Ice Stream D (Parizek and others, 2002) indicate that a proposed thermal-regulation mechanism (Clarke and Marshall, 1998; Hulbe and MacAyeal, 1999; Tulaczyk and others, 2000a, b), which could buffer the West Antarctic ice sheet against complete collapse, may be over-ridden by latent-heat transport within melt-water from beneath inland ice. Extending these studies to Ice Stream A, Whillans Ice Stream and Ice Stream C suggests that further grounding-line retreat contributing to sea-level rise is possible thermodynamically However, the efficiency of basal water distribution may be a constraint on the system. Because local thermal deficits promote basal freeze-on (especially on topographic highs), observed short-term variability is likely to persist.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Subglacial thermal balance permits ongoing grounding-line retreat along the Siple Coast of West Antarctica
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Subglacial thermal balance permits ongoing grounding-line retreat along the Siple Coast of West Antarctica
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Subglacial thermal balance permits ongoing grounding-line retreat along the Siple Coast of West Antarctica
      Available formats
      ×

Copyright

References

Hide All
Alley, R. B. 1989. Water-pressure coupling of sliding and bed deformation: I. Water system. J. Glaciol., 35(119),108118.
Alley, R. B. and Bindschadler, R. A., eds.. 2001. The West Antarctic Ice Sheet: Behavior and Environment. Washington, DC, American Geophysical Union. (Antarctic Research Series 77.)
Alley, R. B., Anandakrishnan, S., Bentley, C. R. and Lord, N.. 1994. A water-piracy hypothesis for the stagnation of Ice Stream C, Antarctica. Ann. Glaciol., 20,187194.
Anandakrishnan, S., Alley, R. B., Jacobel, R.W. and Conway, H.. 2001. The flow regime of Ice Stream C and hypotheses concerning its recent stagnation. in Alley, R. B. and Bindschadler, R.A., eds. The West Antarctic Ice Sheet: Behavior and Environment. Washington, DC, American Geophysical Union, 283294.(Antarctic Research Series 77.)
Anderson, J.B. and Shipp, S. S.. 2001. Evolution of the West Antarctic ice sheet. in Alley, R. B. and Bindschadler, R. A., eds. The West Antarctic Ice Sheet: Behavior and Environment. Washington, DC, American Geophysical Union, 4557. (Antarctic Research Series 77.)
Bindschadler, R. and Vornberger, P..1998. Changes in the West Antarctic ice sheet since 1963 from declassified satellite photography. Science, 279(5351),689692.
Blankenship, D. D., Bentley, C. R., Rooney, S.T. and Alley, R. B.. 1986. Seismic measurements reveal a saturated porous layer beneath an active Antarctic ice stream. Nature, 322(6074), 5457.
Blunier, T. and Brook, E. J.. 2001.Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science, 291(5501),109112.
Budd, W. F. and Jacka, T. H.. 1989. A review of ice rheology for ice sheet modelling. Cold Reg. Sci. Technol.,16(2),107144.
Catania, G. and Paola, C.. 2001. Braiding under glass. Geology, 29(3), 259262.
Clarke, G. K. C. and Marshall, S.J.. 1998. Critical state hypothesis for subpolar glaciers and ice sheets. [Abstract.] Eos, 79(45), Fall Meeting Supplement, F310.
Conway, H., Hall, B.L., Denton, G. H., Gades, A.M. and Waddington, E. D.. 1999. Past and future grounding-line retreat of the West Antarctic ice sheet. Science, 286(5438), 280283.
Cutler, P. M., MacAyeal, D. R., Mickelson, D.M., Parizek, B. B. and Colgan, P. M.. 2000. A numerical investigation of ice-lobe–permafrost interaction around the southern Laurentide ice sheet. J. Glaciol.,46(153), 311325.
Engelhardt, H. and Kamb, B.. 1997. Basal hydraulic system of aWest Antarctic ice stream: constraints from borehole observations. J. Glaciol., 43(144), 207230.
Engelhardt, H. and Kamb, B.. 1998. Basal sliding of Ice Stream B, West Antarctica. J. Glaciol., 44(147), 223230.
Fahnestock, M.A.,Scambos, T.A., Bindschadler, R.A. and Kvaran, G.. 2000. A millennium of variable ice flow recorded by the Ross Ice Shelf, Antarctica. J. Glaciol., 46(155), 652664.
Fortuin, J.P. F. and Oerlemans, J.. 1990. Parameterization of the annual surface temperature and mass balance of Antarctica. Ann. Glaciol., 14,7884.
Hulbe, C. L. and MacAyeal, D. R.. 1999. A new numerical model of coupled inland ice sheet, ice stream, and ice shelf flow and its application to the West Antarctic ice sheet. J. Geophys. Res., 104(B11), 25,349–25,366.
Hutter, K. 1983. Theoretical Glaciology; Material Science of Ice and The Mechanics Glaciers and Ice Sheets. Dordrecht, etc., D. Reidel Publishing Co.; Tokyo, Terra Scientific Publishing Co.
Huybrechts, P. 1992. The Antarctic Ice Sheet and Environmental Change: A Three-Dimensional Modelling Study. Be R. Polarforsch. 99.
Imbrie, J. and 8 others. 1984. The orbital theory of Pleistocene climate: support from a revisedchronology of the marine δ18O record. in Berger, A., Imbrie, J., Hays, J., Kukla, G. and Saltzman, B., eds. Milankovitch and Climate: Understanding The Response To Astronomical Forcing. Part 1. Dordrecht, etc., D. Reidel Publishing Co., 269305. (NATO ASI Series C: Mathematical and Physical Sciences 126.)
Joughin, I. and Tulaczyk, S.. 2002. Positive mass balance of the Ross Ice Streams, West Antarctica. Science, 295(5554), 476480.
Joughin, I. and 7 others. 1999. Tributaries of West Antarctic ice streams revealed by RADARSAT interferometry. Science, 286(5438), 283286.
Joughin, I. R., Tulaczyk, S. and Engelhardt, H.. 2003. Basal melt beneath Whillans Ice Stream and Ice Streams A and C. Ann. Glaciol., 36 (see paper in this volume).
Kamb, B. 2001. Basal zone of the West Antarctic ice streams and its role in lubrication of their rapid motion. in Alley, R. B. and Bindschadler, R. A., eds. The West Antarctic Ice Sheet: Behavior and Environment. Washington, American Geophysical Union, 157199. (Antarctic Research Series 77.)
Le Meur, E. and Huybrechts, P.. 1996. A comparison of different ways of dealing with isostasy: examples from modelling the Antarctic ice sheet during the last glacialcycle. Ann. Glaciol., 23, 309317.
MacAyeal, D. R. 1997. Lessons In Ice Sheet Modeling. Revised Edition. Chicago, University of Chicago. Department of Geophysical Sciences.
Parizek, B. R. 2000. Thermomechanical Flowline Model For Studying The Interactions Between Ice Sheets and The Global Climate System. (M.Sc. thesis, The Pennsylvania State University.)
Parizek, B. R., Alley, R. B., Anandakrishnan, S. and Conway, H.. 2002. Subcatchment melt and long-termstabilityof Ice StreamD, West Antarctica. Geophys. Res. Lett., 29(8), 551554.
Price, S. F., Bindschadler, R. A., Hulbe, C. L. and Blankenship, D. D.. 2002. Force balance along an inland tributary and on set to Ice Stream D, West Antarctica. J. Glaciol., 48(160), 2030.
Retzlaff, R. and Bentley, C. R.. 1993. Timing of stagnation of Ice Stream C, West Antarctica, from short-pulse radar studies of buried surface crevasses. J. Glaciol., 39(133), 553561.
Tulaczyk, S.M., Kamb, B. and Engelhardt, H. F.. 2000a. Basal mechanics of Ice Stream B,West Antarctica. I.Till mechanics. J. Geophys. Res.,105(B1), DC, 463481.
Tulaczyk, S.M., Kamb, B. and Engelhardt, H. F.. 2000b. Basal mechanics of Ice Stream B, West Antarctica. II. Undrained-Plastic-Bed Model. J. Geophys. Res., 105(B1), 483494.
Walder, J. S. and Fowler, A.. 1994. Channelized subglacial drainage over a deformable IL, bed. J. Glaciol., 40(134),315.
Whillans, I. M. and vander Veen, C. J..1993. Newand improved determinations of velocity of Ice Streams B and C, West Antarctica. J. Glaciol., 39(133), 483490.
Whillans, I. M., Bentley, C. R. and van der Veen, C. J.. 2001. Ice Streams B and C. in Alley, R. B. and Bindschadler, R.A., eds. Thewest Antarctic Ice Sheet: Behavior and Environment. Washington, DC, American Geophysical Union, 257281. (Antarctic Research Series 77.)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed