Skip to main content Accessibility help
×
Home

A strategy to represent impacts of subgrid-scale topography on snow evolution in the Canadian Land Surface Scheme

  • Waqar Younas (a1), Rachel W. Hay (a2), Matt K. MacDonald (a1) (a3), Siraj ul Islam (a1) and Stephen J. Déry (a1) (a3)...

Abstract

This sensitivity study applies the offline Canadian Land Surface Scheme (CLASS) version 3.6 to simulate snowpack evolution in idealized topography using observations at Likely, British Columbia, Canada over 1 July 2008 to 30 June 2009. A strategy for a subgrid-scale snow (SSS) parameterization is developed to incorporate two key features: ten elevation bands at 100 m intervals to capture air temperature lapse rates, and five slope angles on four aspects to resolve solar radiation impacts on the evolution of snow depth and SWE. Simulations reveal strong elevational dependencies of snow depth and SWE when adjusting temperatures using a moist adiabatic lapse rate with elevation, with 26% peak SWE differences between that at the average elevation versus the mean of the remainder of the elevation bands. Differences in peak SWE on north- and south-facing slopes increase from 3.0 mm at 10° slope to 17.9 mm at 50° slope. When applied to elevation, slope and aspect combinations derived from a high-resolution digital elevation model, elevation dominates the control of peak SWE values. Inclusion of the range of SSS effects into a regional climate model will improve snowpack and hydrological simulations of western North America's snow-dominated, mountainous watersheds.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A strategy to represent impacts of subgrid-scale topography on snow evolution in the Canadian Land Surface Scheme
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A strategy to represent impacts of subgrid-scale topography on snow evolution in the Canadian Land Surface Scheme
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A strategy to represent impacts of subgrid-scale topography on snow evolution in the Canadian Land Surface Scheme
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
Arnell, NW (2003) Effects of IPCC SRES scenarios on river runoff: a global perspective. Hydrol. Earth Syst. Sci., 7(5), 619641 (doi: 10.5194/hess-7-619-2003)
Arola, A and Lettenmaier, DP (1996) Effects of subgrid spatial heterogeneity on GCM-scale land surface energy and moisture fluxes. J. Clim., 9(6), 13391349 (doi: 10.1175/1520-0442(1996)009<1339:EOSSHO>2.0.CO;2)
Barnett, TP, Adam, JC and Lettenmaier, DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438(7066), 303309 (doi: 10.1038/nature04141)
Bartlett, PA and Verseghy, DL (2015) Modified treatment of intercepted snow improves the simulated forest albedo in the Canadian Land Surface Scheme. Hydrol. Process., 29(14), 32083226 (doi: 10.1002/hyp.10431)
Bartlett, PA, MacKay, MD and Verseghy, DL (2006) Modified snow algorithms in the Canadian Land Surface Scheme: model runs and sensitivity analysis at three boreal forest stands. Atmos.-Ocean, 44(3), 207222 (doi: 10.3137/ao.440301)
Brown, R, Bartlett, P, MacKay, M and Verseghy, D (2006) Evaluation of snow cover in CLASS for SnowMIP. Atmos.-Ocean, 44(3), 223238 (doi: 10.3137/ao.440302)
Brown, RD (2000) Northern Hemisphere snow cover variability and change. J. Clim., 13(13), 23392355 (doi: 10.1175/1520-0442(2000)013<2339:NHSCVA>2.0.CO;2)
Burford, JE, Déry, SJ and Holmes, RD (2009) Some aspects of the hydroclimatology of the Quesnel River Basin, British Columbia, Canada. Hydrol. Process., 23(10), 15291536 (doi: 10.1002/hyp.7253)
Cayan, DR (1996) Interannual climate variability and snowpack in the western United States. J. Clim., 9(5), 928948 (doi: 10.1175/1520-0442(1996)009<0928:ICVASI>2.0.CO;2)
Déry, SJ and Yau, MK (2001) Simulation of blowing snow in the Canadian Arctic using a double-moment model. Bound.-Layer Meteorol., 99(2), 297316 (doi: 10.1023/A:1018965008049)
Déry, SJ and Yau, MK (2002) Large-scale mass balance effects of blowing snow and surface sublimation. J. Geophys. Res., 107(D23), 4679 (doi: 10.1029/2001JD001251)
Déry, SJ, Crow, WT, Stieglitz, M and Wood, EF (2004) Modeling snow-cover heterogeneity over complex Arctic terrain for regional and global climate models. J. Hydrometeorol., 5(1), 3348 (doi: 10.1175/1525-7541(2004)005<0033:MSHOCA>2.0.CO;2)
Déry, SJ, Clifton, A, MacLeod, S and Beedle, MJ (2010) Blowing snow fluxes in the Cariboo Mountains of British Columbia, Canada. Arct. Antarct. Alp. Res., 42(2), 188197 (doi: 10.1657/1938-4246-42.2.188)
Déry, SJ, Knudsvig, HK, Hernández-Henríquez, MA and Coxson, DS (2014) Net snowpack accumulation and ablation characteristics in the Inland Temperate Rainforest of the Upper Fraser River Basin, Canada. Hydrology, 1, 119 (doi: 10.3390/hydrology1010001)
Déry, SJ, Stadnyk, TA, MacDonald, MK and Gauli-Sharma, B (2016) Recent trends and variability in river discharge across northern Canada. Hydrol. Earth Syst. Sci., 20(12), 48014818 (doi: 10.5194/hess-20-1-2016)
Dettinger, MD and Cayan, DR (1995) Large-scale atmospheric forcing of recent trends towards early snowmelt runoff in California. J. Clim., 8(3), 606623 (doi: 10.1175/1520-0442(1995)008<0606:LSAFOR>2.0.CO;2)
DeWalle, R and Rango, A (2008) Principles of snow hydrology. Cambridge University Press, New York, USA, 410 pp.
Diaz, HF and Eischeid, JK (2007) Disappearing ‘alpine tundra’ Köppen climate type in the western United States. Geophys. Res. Lett., 34(18), L18707 (doi: 10.1029/2007GL031253)
Ganji, A, Sushama, L, Verseghy, D and Harvey, R (2017) On improving cold region hydrological processes in the Canadian Land Surface Scheme. Theor. Appl. Climatol., 127, 4559 (doi: 10.1007/s00704-015-1618-4)
Gordon, M, Simon, K and Taylor, PA (2006) On snow depth predictions with the Canadian Land Surface Scheme including a parameterization of blowing snow sublimation. Atmos.-Ocean, 44(3), 239255 (doi: 10.3137/ao.440303)
Hamlet, AF, Mote, PW, Clark, MP and Lettenmaier, DP (2005) Effects of temperature and precipitation variability on snowpack trends in the western United States. J. Clim., 18(21), 45454561 (doi: 10.1175/JCLI3538.1)
Hedstrom, NR and Pomeroy, JW (1998) Measurements and modelling of snow interception in the boreal forest. Hydrol. Process., 12(10–11), 16111625 (doi: 10.1002/(SICI)1099-1085(199808/09)12:10/11<1611::AID-HYP684>3.0.CO;2-4)
Hernández-Henríquez, MA, Déry, SJ and Derksen, C (2015) Polar amplification and elevation-dependence in trends of Northern Hemisphere snow cover extent, 1971–2014. Environ. Res. Lett., 10(4), 044010 (doi: 10.1088/1748-9326/10/4/044010)
Jarvis, A, Reuter, HI, Nelson, A and Guevara, E (2008) Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org)
Jefferson, AJ (2011) Seasonal versus transient snow and the elevation dependence of climate sensitivity in maritime mountainous regions. Geophys. Res. Lett., 38(16), L16402 (doi: 10.1029/2011GL048346)
Kang, D, Gao, H, Shi, X and Déry, SJ (2014) On the changing contribution of snow to the hydrology of the Fraser River Basin, Canada. J. Hydrometeorol., 15(4), 13441365 (doi: 10.1175/JHM-D-13-0120.1)
Kang, D, Gao, H, Shi, X, Islam, SU and Déry, SJ (2016) Impacts of a rapidly declining mountain snowpack on streamflow timing in Canada's Fraser River Basin. Sci. Rep., 6, 19299 (doi: 10.1038/srep19299)
Kauffeldt, A, Wetterhall, F, Peppenberger, F, Salamon, P and Thielen, J (2016) Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level. Environ. Model. Softw., 75, 6876 (doi: 10.1016/j.envsoft.2015.09.009)
Langlois, A and 5 others (2014) Evaluations of CLASS 2.7 and 3.5 simulations of snow properties from the Canadian Regional Climate Model (CRCM4) over Québec, Canada. J. Hydrometeorol., 15(4), 13251343 (doi: 10.1175/JHM-D-13-055.1)
Lapp, S, Byrne, J, Townshend, I and Kienzle, S (2005) Climate warming impacts on snowpack accumulation in an alpine watershed. Int. J. Climatol., 25(4), 521536 (doi: 10.1002/joc.1140)
Lenaerts, JTM and 5 others (2010) Modelling snowdrift sublimation on an Antarctic ice shelf. Cryosphere, 4(2), 179190 (doi: 10.5194/tc-4-179-2010)
Lenaerts, JTM, van den Broeke, MR, van Angelen, JH, van Meijgaard, E and Déry, SJ (2012) Drifting snow climate of the Greenland ice sheet: a study with a regional climate model. Cryosphere, 6(4), 891899 (doi: 10.5194/tc-6-891-2012)
Leung, RL and Qian, Y (2003) The sensitivity of precipitation and snowpack simulations to model resolution via nesting in regions of complex terrain. J. Hydrometeorol., 4(6), 10251043 (doi: 10.1175/1525-7541(2003)004<1025:TSOPAS>2.0.CO;2)
Li, HWD and Lam, TNT (2007) Determining the optimal tilt angle and orientation for solar energy collection based on measured solar radiance data. Int. J. Photoenergy, 65(1–4), 19 (doi: 10.1155/2007/85402)
Liston, GE (2004) Representing subgrid snow cover heterogeneities in regional and global models. J. Clim., 17(6), 13811397 (doi: 10.1175/1520-0442(2004)017<1381:RSSCHI>2.0.CO;2)
Liu, X and Chen, B (2000) Climate warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20(14), 17291742 (doi: 10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y)
Liu, X, Cheng, Z, Yan, L and Yin, Z (2009) Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob. Planet. Change., 68(3), 164174 (doi: 10.1016/j.gloplacha.2009.03.017)
MacDonald, MK, Davison, BJ, Mekonnen, MA and Pietroniro, A (2016) Comparison of land surface scheme simulations with field observations versus atmospheric model output as forcing. Hydrol. Sci. J., 61(16), 28602871 (doi: 10.1080/02626667.2016.1177185)
MacLeod, S and Déry, SJ (2007) The Cariboo Alpine Mesonet. CMOS Bull., 35(2), 4551
Marsh, P, Bartlett, P, MacKay, M, Pohl, S and Lantz, T (2010) Snowmelt energetics at a shrub tundra site in the western Canadian Arctic. Hydrol. Process., 24(25), 36033620 (doi: 10.1002/hyp.7786)
Marshall, SJ, Sharp, MJ, Burgess, DO and Anslow, FS (2006) Near-surface temperature lapse rates on the Prince of Wales icefield, Ellesmere Island, Canada: implications for regional downscaling of temperature. Int. J. Climatol., 27(3), 385398 (doi: 10.1002/joc.1396)
Mote, PW (2006) Climate-driven variability and trends in mountain snowpack in western North America. J. Clim., 19(23), 62096220 (doi: 10.1175/JCLI3971.1)
Mote, PW, Hamlet, AF, Clark, MP and Lettenmaier, DP (2005) Declining mountain snowpack in western North America. Bull. Am. Meteorol. Soc., 86(1), 3949 (doi: 10.1175/BAMS-86-1-39)
Mote, TL, Grundstein, AJ, Leathers, DJ and Robinson, DA (2003) A comparison of modeled, remotely sensed, and measured snow water equivalent in the Northern Great Plains. Water Resour. Res., 39(8), 1209 (doi: 10.1029/2002WR001782)
Music, B and 5 others (2009) Runoff modelling within the Canadian Regional Climate Model (CRCM): analysis over the Quebec/Labrador watersheds. New approaches to hydrological predictions in data sparse-regions. In Proc. of 2009 Symp. HS.2 at the Joint IAHS & IAH Convention on Water: A Vital Resource Under Stress – How Science Can Help, 6-12 September 2009, Hyderabad, India. International Association of Hydrological Sciences, Wallingford, UK, 183–194.
Nitta, T and 8 others (2014) Representing variability in subgrid snow cover and snow depth in a global land model: offline validation. J. Clim., 27(9), 33183330 (doi: 10.1175/JCLI-D-13-00310.1)
Niu, G-Y and 11 others (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116(D12), D12109 (doi: 10.1029/2010JD015140)
Noilhan, J and Mahfouf, JF (1996) The ISBA land surface parameterisation scheme. Glob. Planet. Change, 13, 145159
Ohmura, A (2012) Enhanced temperature variability in high-altitude climate change. Theor. Appl. Climatol., 110(4), 499508 (doi: 10.1007/s00704-012-0687-x)
Pan, M and 13 others (2003) Snow process modeling in the North American Land Data Assimilation System (NLDAS): 2. Evaluation of model simulated snow water equivalent. J. Geophys. Res., 108(D22), 8850 (doi: 10.1029/2003JD003994)
Pepin, N and 20 others (2015) Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change, 5(5), 424430 (doi: 10.1038/nclimate2563)
Pepin, NC and Lundquist, JD (2008) Temperature trends at high elevations: patterns across the globe. Geophys. Res. Lett., 35(14), L14701 (doi: 10.1029/2008GL034026)
Petticrew, EL and 11 others (2015) The impact of a catastrophic mine tailings impoundment spill into one of North America's largest fjord lake: Quesnel Lake, British Columbia, Canada. Geophys. Res. Lett., 42(9), 33473355 (doi: 10.1002/2015GL063345)
Pitman, AJ (2003) The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol. 23, 479510 (doi: 10.1002/joc.893)
Poitras, V, Sushama, L, Seglenieks, F, Khaliq, MN and Soulis, E (2011) Projected changes to streamflow characteristics over Western Canada as simulated by the Canadian RCM. J. Hydrometeorol., 12, 13951413 (doi: 10.1175/JHM-D-10-05002.1)
Pomeroy, JW and 6 others (1998) An evaluation of snow accumulation and ablation processes for land surface modelling. Hydrol. Process., 12(15), 23392367 (doi: 10.1002/(SICI)1099-1085(199812)12:15<2339::AID-HYP800>3.0.CO;2-L)
Prein, AF and 14 others (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects and challenges. Rev. Geophys., 53(2), 323361 (doi: 10.1002/2014RG000475)
Roy, A, Royer, A, Montpetit, B, Bartlett, PA and Langlois, A (2013) Snow specific surface area simulation using the one-layer snow model in the Canadian Land Surface Scheme (CLASS). Cryosphere, 7(3), 961975 (doi: 10.5194/tc-7-961-2013)
Šeparović, L and 7 others (2013) Present climate and climate change as simulated by the fifth-generation Canadian regional climate model. Clim. Dyn., 41, 31673201 (doi: 10.1007/s00382-013-1737-5)
Sharma, AR and Déry, SJ (2016) Elevational dependence of air temperature variability and trends in British Columbia's Cariboo Mountains, 1950–2010. Atmos.-Ocean, 54(2), 153170 (doi: 10.1080/07055900.2016.1146571)
Sturm, M, Holmgren, J, Konig, M and Morris, K (1997) The thermal conductivity of seasonal snow. J. Glaciol., 43(143), 2641 (doi: 10.3198/1997JoG43-143-26-41)
Verseghy, D (1991) CLASS – a Canadian land surface scheme for GCMs. I. Soil model. Int. J. Climatol., 11(2), 111133 (doi: 10.1002/joc.3370110202)
Verseghy, D (2012) CLASS – The Canadian land surface scheme (version 3.6). Technical Documentation, February 2012, Science and Technology Branch, Climate Research Division, Environment Canada, Canada
Verseghy, D, McFarlane, NA and Lazare, M (1993) A Canadian land surface scheme for GCMs: II. Vegetation model and coupled runs. Int. J. Climatol., 13(4), 347370 (doi: 10.1002/joc.3370130402)
Verseghy, D, Brown, R and Wang, L (2017) Evaluation of CLASS snow simulation over eastern Canada. J. Hydrometeorol., 18(5), 12051225 (doi: 10.1175/JHM-D-16-0153.1)
Viterbo, P and Beljaars, ACM (1995) An improved land surface parameterization scheme in the ECMWF model and its validation. J. Clim., 8, 27162748
Wang, Q, Fan, X and Wang, M (2016) Evidence of high-elevation amplification versus Arctic amplification. Sci. Rep., 6, 19219 (doi: 10.1038/srep19219)
Whiteman, CD (2000) Mountain meteorology. Oxford University Press, 355 pp
Wi, S and 5 others (2012) Climate change projection of snowfall in the Colorado River Basin using dynamical downscaling. Water Resour. Res., 48(5), W05504 (doi: 10.1029/2011WR010674)
Yang, ZL and Niu, GY (2003) The versatile integrator of surface and atmosphere processes. Part 1. Model description. Glob. Planet. Change, 38, 175189
Zhao, W and Li, A (2015) A review on land surface processes modelling over complex terrain. Adv. Meteorol., 15(10), 117 (doi: 10.1155/2015/607181)

Keywords

A strategy to represent impacts of subgrid-scale topography on snow evolution in the Canadian Land Surface Scheme

  • Waqar Younas (a1), Rachel W. Hay (a2), Matt K. MacDonald (a1) (a3), Siraj ul Islam (a1) and Stephen J. Déry (a1) (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed