Skip to main content Accessibility help
×
Home

Simulation of a snow avalanche model test using computational fluid dynamics

  • Kenichi Oda (a1), Shuji Moriguchi (a1), Isao Kamiishi (a2), Atsushi Yashima (a1), Kazuhide Sawada (a1) and Atsushi Sato (a2)...

Abstarct

Here we apply a two-phase flow model to simulate snow avalanche motion. Flowing snow is modeled as a Bingham fluid. Small-scale laboratory experiments were conducted using a rotating viscometer to validate the constitutive model. Experimental scale model test-runs were also performed, and run-out distances and impact pressures obtained in the model tests were reproduced using the two-phase flow model. Comparisons revealed that the simulated results were strongly dependent on the basal friction angle and calculation mesh size. Although the method reproduced the laboratory model results quite well, constitutive aspects of the basal surface remained unsolved. Future research will need to incorporate a numerical technique to handle the basal boundary, such as a boundary-fitted coordinate technique.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Simulation of a snow avalanche model test using computational fluid dynamics
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Simulation of a snow avalanche model test using computational fluid dynamics
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Simulation of a snow avalanche model test using computational fluid dynamics
      Available formats
      ×

Copyright

References

Hide All
Casassa, G., Narita, H. and Maeno, N.. 1991. Shear cell experiments of snow and ice friction. J. Appl. Phys., 69(6), 3745–3756.
Christen, M., Bartelt, P. and Gruber, U.. 2002. AVAL-1 D: an avalanche dynamics program for the practice. In Proceedings of International Congress Interpraevent 2002 in the Pacific Rim, 14–18 October 2002, Matsumoto, Japan. Tokyo, International Research Society Interpraevent for the Pacific Rim, 715–725.
Christen, M., Kowalski, J. and Bartelt, P.. 2010. RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol., 63(1–2), 1–14.
Gauer, P., Elverhøi, A., Issler, D. and de Blasio, F.V.. 2006. On numerical simulations of subaqueous slides: back-calculations of laboratory experiments of clay-rich slides. Nor. J. Geol., 86(3), 295–300.
Hirt, C.W. and Nichols, B.D.. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 39(1), 201–225.
Izumi, K. 1998. Disaster of a bygone avalanche. Meteorol. Soc. Jpn Note 190, 115–125.
Japan Construction Mechanization Association (JCMA). 1988. Protection-against-snow engineering handbook. Tokyo, Japan Construction Mechanization Association. [In Japanese.]
Kamiishi, I., Machida, T., Oda, K., Yamaguchi, S. and Sato, A.. 2009. Measurement of cohesion and internal friction angle of wet snow. In Summary of JSSI and JSSE Joint Conference on Snow and Ice Research 2009/Sapporo. Sapporo, Japanese Society of Snow and Ice/Japan Society for Snow Engineering, 209. [In Japanese.]
Lang, T.E. and Brown, R.L.. 1980. Snow-avalanche impact on structures. J. Glaciol., 25(93), 445–455.
Lang, T.E. and Martinelli, M. Jr., 1979. Application of numerical transient fluid dynamics to snow avalanche flow. Part II. Avalanche modeling and parameter error evaluation. J. Glaciol., 22(86), 117–126.
Lang, T.E., Dawson, K.L. and Martinelli, M. Jr., 1979. Application of numerical transient fluid dynamics to snow avalanche flow. Part I. Development of computer program AVALNCH. J. Glaciol., 22(86), 107–115.
Moriguchi, S., Yashima, A., Sawada, K., Uzuoka, R. and Ito, M.. 2005. Numerical simulation of flow failure of geomaterials based on fluid dynamics. Soils Found., 45(2), 155–165.
Moriguchi, S., Borja, R.I., Yashima, A. and Sawada, K.. 2009. Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech., 4(1), 57–71.
Moriguchi, S., Borja, R.I., Yashima, A., Sawada, K. and Oda, K.. 2010. Discrete and continuum modeling of sand flow experiment. In Jiang, M., Liu, F. and Bolton, M., eds. Geomechanics and geotechnics: from micro to macro. Proceedings of the International Symposium on Geomechanics and Geotechnics, 10–12 October, 2010, Shanghai, China. London, Taylor & Francis, 531–536.
Naaim, M., Furdada, G. and Martínez, H.. 2002. Calibration and application of the MN2D dynamics model to the avalanches of Las Leñas (Argentina). Natur. Hazards Earth Syst. Sci. (NHESS), 2(3–4), 221–226.
Natale, L., Nettuno, L. and Savi, F.. 1994. Numerical simulation of dense snow avalanches: an hydraulic approach. In Hamza, M.H., ed. Proceedings of the 24th International Conference on Modelling and Simulation, 2–4 May 1994, Pittsburgh, Pennsylvania. Anaheim, CA, International Association of Science and Technology Development/Acta Press, 233–236.
Nishimura, K. 1991. Studies on the fluidized snow dynamics. Contrib. Inst. Low Temp. Sci., Ser. A 37, 1–55.
Patra, A.K. and 10 others. 2005. Parallel adaptive numerical simulation of dry avalanches over natural terrain. J. Volcan. Geotherm. Res., 139(1–2), 1–21.
Xiao, F., Honma, Y. and Kono, T.. 2005. A simple algebraic interface capturing scheme using hyperbolic tangent function. Int. J. Num. Meth. Fluids., 48(9), 1023–1040.
Yabe, T. and Aoki, T.. 1991. A universal solver for hyperbolic equations by cubic-polynomial interpolation. I. One-dimensional solver. Comput. Phys. Commun., 66(2–3), 219–232.

Simulation of a snow avalanche model test using computational fluid dynamics

  • Kenichi Oda (a1), Shuji Moriguchi (a1), Isao Kamiishi (a2), Atsushi Yashima (a1), Kazuhide Sawada (a1) and Atsushi Sato (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed