Skip to main content Accessibility help
×
Home

Sensitivity tests of coupled ice-sheet/ice-stream dynamics in the EISMINT experimental ice block

  • Shawn J. Marshall (a1) and Garry K. C. Clarke (a1)

Abstract

A continuum mixture model of coupled ice-sheet/ice-stream dynamics has been developed within a conventional three-dimensional finite-difference model framework. The ice mass is areally divided into sheet-ice and stream-ice components. Dynamic evolution of each component is solved with coupling terms to describe mass exchange between flows. In this way, ice-stream fluxes can be incorporated in a rigorous dynamical model with only a doubling of computational cost. This paper presents simple model tests using the EISMINT experimental ice block, a 1500 km × 1500 km ice sheet which rests on a flat bed. Ice-stream behaviour is investigated for a range of coupling rules and activation scenarios. In simple tests presented here, we find that the viscous response time of source ice feeding the ice stream may be a factor limiting ice-stream vigour and longevity.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sensitivity tests of coupled ice-sheet/ice-stream dynamics in the EISMINT experimental ice block
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sensitivity tests of coupled ice-sheet/ice-stream dynamics in the EISMINT experimental ice block
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sensitivity tests of coupled ice-sheet/ice-stream dynamics in the EISMINT experimental ice block
      Available formats
      ×

Copyright

References

Hide All
Bond, G. C. and Lotti, R.. 1995. Iceberg discharges into the North Atlantic on millennial time scales during the last glaciation. Science, 267(5200), 10051010.
Clark, P. U. 1994. Unstable behavior of the Laurentide ice sheet over deforming sediment and its implications for climate change. Qual. Res., 41(1), 1925.
Glen, J. W. 1958. The flow law of ice: a discussion of the assumptions made in glacier theory, their experimental foundation and consequences. International Association of Scientific Hydrology Publication 47. (Symposium at Chamonix 1958 — Physics of the Movement of the Ice), 171183.
Hutter, K. 1983, Theoretical glaciology; material science of ice and the mechanics of glaciers and ice sheets, Dordrecht, etc., D. Reidel Publishing Co./Tokyo, Terra Publishing Co.
Huybrechts, P. 1990. A 3-D model for the Antarctic ice sheet: a sensitivity study on the glacial interglacial contrast. Climate Dyn., 5(2), 7992.
Huybrechts, P. 1992. The Antarctic ice sheet and environmental change: a three-dimensional modelling study. Ber. Polarforsch. 99.
Huybrechts, P., Payne, T. and EISMINT Intercomparison Group. 1996. The EISMINT benchmarks for testing ice-sheet models. Ann. Glaciol., 23, (see paper in this volume)
Jenson, J. W. 1991. A nonlinear numerical model of the Lake Michigan lobe, Laurentide ice sheet. (Ph.D. thesis, Oregon State University.)
MacAyeal, D. K. 1989. Large-scale ice flow over a viscous basal sediment: theory and application to Ice Stream B. Antarctica. J. Geophys. Res., 94(B4), 40714087.
Mahaffy, M. W. 1976. A three-dimensional numerical model of ice sheets: tests on the Barnes Ice Cap. Northwest Territories. J. Geophys. Res., 81(6), 10591066.
Morgan, V. I., Jacka, T. H., Akerman, G. J. and Clarke, A. L.. 1982. Outlet glacier and mass-budget studies in Enderby, Kemp and Mac Robertson lands. Antarctica. Ann. Glaciol., 3, 204210.
Morland, L. W. 1984. Thermo-mechanical balances of ice sheet flows. J. Geophys. Astrophys. Fluid Dyn., 29, 237266.
Morland, L. W. 1987. Unconfined ice-shelf flow. In Van der Veen, C. J. and Oerlemans, J., eds. Dynamics of the West Antarctic ice sheet. Dordrecht, etc., Kluwer Academic Publishers, 99116.
Patankar, S. V. 1980. Numerical heat transfer and fluid flow. New York, Hemisphere Publishing.
Peterson, W. S. B. 1994. The physics of glaciers. Third edition. Oxford, etc., Elsevier Science Ltd.
Shabtaie, S. and Bentley, C. R.. 1988. Mass-balance studies of ice streams A, B, and C, West Antarctica, and possible surging behavior of Ice Stream B. Ann. Glaciol., 11, 137149.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed