Skip to main content Accessibility help
×
Home

Sea-ice thickness in the Weddell Sea, Antarctica: a comparison of model and upward-looking sonar data

  • Angelika H.H. Renner (a1) and Victoria Lytle (a1)

Abstract

Sea-ice thickness is a key parameter for estimates of salt fluxes to the ocean and the contribution to global thermohaline circulation. Observations of sea-ice thickness in the Southern Ocean are sparse and difficult to collect. An exception to this data gap is time-series data from upward-looking sonars (ULS) which sample the drifting sea ice continuously. In this study we use ULS data from ten different locations over periods ranging from 9 to 25 months to compare with model data. Although these data are limited in space and time, they provide a qualitative indication of the ability of global climate models (GCMs) to adequately represent Southern Ocean sea ice. We compare the ULS data to output from four different GCMs (BCCR-BCM2.0, ECHAM5/MPI-OM, UKMO-HadCM3 and NCAR CCSM3) which were used for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. They simulate the ice thickness reasonably well, but in most cases average model ice thickness is less than thicknesses derived from ULS data. The seasonal cycle produced by the models correlates well with the ULS except for locations near Maud Rise, where in summer the ULS find a low concentration of thick ice floes. This overly thin ice will have implications for both the salt flux to the central Weddell Sea during the growth season and the freshwater flux during the melt season. Using satellite-derived ice-drift data to calculate transports in the Weddell Sea, we find that the underestimation of ice thickness results in underestimated salt fluxes.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sea-ice thickness in the Weddell Sea, Antarctica: a comparison of model and upward-looking sonar data
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sea-ice thickness in the Weddell Sea, Antarctica: a comparison of model and upward-looking sonar data
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sea-ice thickness in the Weddell Sea, Antarctica: a comparison of model and upward-looking sonar data
      Available formats
      ×

Copyright

References

Hide All
Arzel, O., Fichefet, T. and Goosse, H.. 2005. Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs. Ocean Model., 12(3–4), 401415.
Bitz, C.M. and Lipscomb, W.H.. 1999. An energy-conserving thermodynamic model of sea ice. J. Geophys. Res., 104(C7), 15,66915,677.
Bryan, K. 1969. Climate and the ocean circulation. III. The ocean model. Mon. Weather Rev., 97(11), 806827.
Connolley, W.M. 2005. Sea ice concentrations in the Weddell Sea: a comparison of SSM/I, ULS and GCM data. Geophys. Res. Lett., 32(7), L07501. (10.1029/2004GL021898.)
Drange, H and Simonsen, K. 1996. Formulation of air–sea fluxes in ESOP2 version of MICOM. Bergen, Nansen Environmental and Remote Sensing Center. (Technical Report 25.)
Drinkwater, M.R., Liu, X. and Harms, S.. 2001. Combined satellite- and ULS-derived sea-ice flux in the Weddell Sea, Antarctica. Ann. Glaciol., 33, 125132.
Fahrbach, E., Rohardt, G., Schröder, M. and Strass, V.. 1994. Transport and structure of the Weddell Gyre. Ann. Geophys., 12(9), 840855.
Gordon, A.L. and Lukin, V.V.. 1992. Ice Station Weddell #1. Antarct. J. US, 27(5), 9799.
Haas, C., Gerland, S., Eicken, H. and Miller, H.. 1997. Comparison of sea-ice thickness measurements under summer and winter conditions in the Arctic using a small electromagnetic induction device. Geophysics, 62(3), 749757.
Harder, M. 1996. Dynamik, Rauhigkeit und Alter des Meeeises in der Arktis. (PhD thesis, Alfred-Wegener-Institut für Polar- und Meeresforschung.)
Harms, S., Fahrbach, E. and Strass, V.H.. 2001. Sea ice transports in the Weddell Sea. J. Geophys. Res., 106(C5), 9057–9073.
Hibler, W.D. III. 1979. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9(7), 815846.
Holland, M.M. and Raphael, M.N.. 2005. Twentieth century simulation of the southern hemisphere climate in coupled models. Part II: sea ice conditions and variability. Climate Dyn., 26(2–3), 229245.
Hunke, E.C. and Dukowicz, J.K.. 1997. An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27(9), 18491867.
Jeffries, M.O. and Adolphs, U.. 1997. Early winter snow and ice thickness distribution, ice structure and development of the western Ross Sea pack ice between the ice edge and the Ross Ice Shelf. Antarct. Sci., 9(2), 188200.
Kwok, R., Cunningham, G.F., Zwally, H.J. and Yi, D.. 2006. ICESat over Arctic sea ice: interpretation of altimetric and reflectivity profiles. J. Geophys. Res., 111(C6), C06006. (10.1029/2005JC003175.)
Lange, M.A. and Eicken, H.. 1991. The sea ice thickness distribution in the northwestern Weddell Sea. J. Geophys. Res., 96(C3), 4821–4837.
Laxon, S., Peacock, N. and Smith, D.. 2003. High interannual variability in sea ice thickness in the Arctic region. Nature, 425(6961), 947950.
Lemke, P., Hibler, W.D., Flato, G., Harder, M. and Kreyscher, M.. 1997. On the improvement of sea-ice models for climate simulations: the Sea Ice Model Intercomparison Project. Ann. Glaciol., 25, 183187.
Melling, H., Johnston, P.H. and Riedel, D.A.. 1995. Measurements of the underside topography of sea ice by moored subsea sonar. J. Atmos. Oceanic Technol., 12(3), 589602.
Muench, R.D. and Gordon, A.L.. 1995. Circulation and transport of water along the western Weddell Sea margin. J. Geophys. Res., 100(C9), 18,50318,515.
Parkinson, C.L., Vinnikov, K.Y. and Cavalieri, D.J.. 2006. Evaluation of the simulation of the annual cycle of Arctic and Antarctic sea ice coverages by 11 major global climate models. J. Geophys. Res., 111(C7), C07012. (10.1029/2005JC003408.)
Perovich, D.K., Grenfell, T.C., Richter-Menge, J.A., Light, B., Tucker, W.B. III and Eicken, H.. 2003. Thin and thinner: ice mass balance measurements during SHEBA. J. Geophys. Res., 108(C3), 8050. (10.1029/2001JC001079.)
Rintoul, S.R. 1998. On the origin and influence of Adélie Land bottom water. In Jacobs, S.S. and Weiss, R.F., eds. Ocean, ice and atmosphere: interactions at the Antarctic continental margin. Washington, DC, American Geophysical Union, 151172. (Antarctic Research Series 75.)
Rothrock, D.A., Yu, Y. and Maykut, G.A.. 1999. Thinning of the Arctic sea-ice cover. Geophys. Res. Lett., 26(23), 34693472.
Semtner, A.J. Jr. 1976. A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr., 6(5), 379389.
Strass, V.H. and Fahrbach, E.. 1998. Temporal and regional variation of sea ice draft and coverage in the Weddell Sea obtained from upward looking sonars. In Jeffries, M.O., ed. Antarctic sea ice: physical processes, interactions and variability. Washington, DC, American Geophysical Union, 123139. (Antarctic Research Series 74.)
Strass, V.H., Tian, W.H. and Nemoto, M.. 1998. Measuring sea ice draft and coverage with moored upward looking sonars. Deep-Sea Res. I, 45(4), 795818.
Timmermann, R., Worby, A., Goosse, H. and Fichefet, T.. 2004. Utilizing the ASPeCt sea ice thickness data set to evaluate a global coupled sea ice–ocean model. J. Geophys. Res., 109(C7), C07017. (10.1029/2003JC002242.)
Vinje, T., Nordlund, N. and Kvambekk, Å.S.. 1998. Monitoring ice thickness in Fram Strait. J. Geophys. Res., 103(C5), 10,43710,450.
Wadhams, P. and Horne, R.J.. 1980. An analysis of ice profiles obtained by submarine sonar in the Beaufort Sea. J. Glaciol., 25(93), 401424. Erratum: 27(96), 1981, 367.

Related content

Powered by UNSILO

Sea-ice thickness in the Weddell Sea, Antarctica: a comparison of model and upward-looking sonar data

  • Angelika H.H. Renner (a1) and Victoria Lytle (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.