Skip to main content Accessibility help
×
Home

Scattering of VHF radio waves from within the top 700 m of the Antarctic ice sheet and its relation to the depositional environment: a case-study along the Syowa–Mizuho–Dome Fuji traverse

  • Shuji Fujita (a1), Hideo Maeno (a2), Teruo Furukawa (a3) and Kenichi Matsuoka (a4)

Abstract

Radio-wave scattering is a convenient method to image the properties of large internal regions of ice sheets. We used a ground-based radar system with short pulses of 60 and 179MHz frequencies to scatter off internal strata within 100–700 m of the surface in the ice sheet of East Antarctica. Data were examined along an 1150 kmlong traverse line that was approximately along the ice flowline from inland of Dome Fuji station to the coast. The scattered waves are from strata, and the dominant cause of the scattering was changes in dielectric permittivity across the strata. Therefore, density fluctuations primarily cause the scattering, although variations in ice-crystal fabrics and acidity could also have effects. The power scattered from the same depths varied by > 15 dB from one location to another. These variations correlate with the accumulation rate, changes in the surface slope, and subglacial bedrock undulations. Variations of the scattered power suggest that density contrasts in the strata are highly variable depending on these interdependent local conditions. The distribution of strata along the route allowed estimates of the ice-flow trajectories to depths of about 250 m.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Scattering of VHF radio waves from within the top 700 m of the Antarctic ice sheet and its relation to the depositional environment: a case-study along the Syowa–Mizuho–Dome Fuji traverse
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Scattering of VHF radio waves from within the top 700 m of the Antarctic ice sheet and its relation to the depositional environment: a case-study along the Syowa–Mizuho–Dome Fuji traverse
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Scattering of VHF radio waves from within the top 700 m of the Antarctic ice sheet and its relation to the depositional environment: a case-study along the Syowa–Mizuho–Dome Fuji traverse
      Available formats
      ×

Copyright

References

Hide All
Ackley, S.F. and Keliher, T.E.. 1979. Ice sheet internal radio-echo reflections and associated physical property changes with depth. J. Geophys. Res., 84(B10), 5675–5680.
Azuma, N. and others. 1997. Glaciological data collected by the 36th Japanese Antarctic Research Expedition during 1995–1996. JARE Data Rep. 223.
Azuma, N. and 6 others. 2000. Crystallographic analysis of the Dome Fuji ice core. In Hondoh, T., ed. Physics of ice core records. Sapporo, Hokkaido University Press, 45–61.
Bogorodsky, V.V., Bentley, C.R. and Gudmandsen, P.E.. 1985. Radioglaciology. Dordrecht, etc., D. Reidel Publishing Co.
Clough, J.W. 1977. Radio-echo sounding: reflections from internal layers in ice sheets. J. Glaciol., 18(78), 3–14.
Endo, Y. and Fujiwara, K.. 1973. Characteristics of the snow cover in East Antarctica along the route of the JARE South Pole traverse and factors controlling such characteristics. JARE Sci. Rep., Ser. C 7.
Fujita, S. and Mae, S.. 1994. Causes and nature of ice-sheet radio-echo internal reflections estimated from the dielectric properties of ice. Ann. Glaciol., 20, 80–86.
Fujita, S., Kawada, K. and Fujii, Y.. 1998. Glaciologicaldata collectedby the 37th Japanese Antarctic Research Expedition during 1996–1997. JARE Data Rep., 234. (Glaciology 27.)
Fujita, S. and 6 others. 1999. Nature of radio-echo layering in the Antarctic ice sheet detected by a two-frequency experiment. J. Geophys. Res., 104(B6), 13, 013–13, 024.
Fujita, S., Matsuoka, T., Ishida, T., Matsuoka, K. and Mae, S.. 2000 .A summary of the complexdielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets. In T., Hondoh, ed. Physics of ice core records. Sapporo, Hokkaido University Press, 185–212.
Furukawa, T., Kamiyama, K. and Maeno, H.. 1996. Snow surface features along the traverse route from the coast to Dome Fuji Station, Queen Maud Land, Antarctica. Proc. NIPR Symp. Polar Meteorol. Glaciol. 10, 13–24.
Gogineni, S., Chuah, T., Allen, C., Jezek, K. and Moore, R.K.. 1998. An improved coherent radar depth sounder. J.Glaciol., 44(148), 659–669.
Gudmandsen, P. 1975. Layer echoes in polar ice sheets. J.Glaciol., 15(73), 95–101.
Harrison, C.H. 1973. Radio echo sounding of horizontal layers in ice. J. Glaciol., 12(66), 383–397.
Jacobel, R.W. and Hodge, S.M.. 1995. Radar internal layers from the Greenland summit. Geophys. Res. Lett., 22(5), 587–590.
Legrésy, B. and Rémy, F.. 1997. Altimetric observations of surface characteristics of the Antarctic ice sheet. J. Glaciol., 43(144), 265–275. (Erratum: 43(145), p. 596.)
Maeno, H. and 7 others. 1994. Using a mobile radio echo sounder to measure bedrock topography in east Queen Maud Land, Antarctica. Proc. NIPR Symp. Polar Meteorol. Glaciol. 8, 149–160.
Maeno, H., Uratsuka, S., Kamiyama, K., Furukawa, T. and Watanabe, O.. 1997. [Bedrock topography and internal structures of ice sheet in the Shirase Glacier drainage area revealed from radio-echo soundings.] Seppyo, 59(5), 331–339. [InJapanese with English summary.]
Matsuoka, K., Maeno, H., Uratsuka, S., Fujita, S., Furukawa, T. and Watanabe, O.. 2002. A ground-based, multi-frequency ice-penetrating radar system. Ann. Glaciol., 34 (see paper in this volume).
Millar, D.H.M. 1981. Radio-echo layering in polar ice sheets and past volcanic activity. Nature, 292(5822), 441–443.
Moore, J.C. 1988. Dielectric variability of a 130m Antarctic ice core: implications for radar sounding. Ann. Glaciol., 11, 95–99.
Motoyama, H. and 8 others. 1995. Preliminary study of ice flow observations along traverse routes from coast to Dome Fuji, East Antarctica by differential GPS method. Antarct. Rec., 39, 94–98.
Motoyama, H., Kawamura, Y., Kanao, M., Hirasawa, N., Kaneto, S. and Yamanouchi, T.. 1999. Glaciological data collected by the 38th Japanese Antarctic Research Expedition during 1997–1998. JARE Data Rep. 239. (Glaciology 28.)
Nixdorf, U. and 6 others. 1999. The newly developed airborne radio-echo sounding system of the AWI as a glaciological tool. Ann. Glaciol., 29, 231–238.
Paren, J.G. and Q.Robin, G. de. 1975. Internal reflections in polar ice sheets. J. Glaciol., 14(71), 251–259.
Richardson, C., Aarholt, E., Hamran, S.-E., Holmlund, P. and Isaksson, E.. 1997. Spatial distribution of snow in western Dronning Maud Land, East Antarctica, mapped by a ground-based snow radar. J. Geophys. Res., 102(B9), 20, 343–20, 353.
Robin, G. de Q. and Millar, D.H.M.. 1982. Flow of ice sheets in the vicinity of subglacial peaks. Ann. Glaciol., 3, 290–294.
Robin, G. de Q., Evans, S. and Bailey, J.T.. 1969. Interpretation of radio echo sounding in polar ice sheets. Philos. Trans. R. Soc. London, Ser. A, 265(1166), 437–505.
Satow, K., Watanabe, O., Shoji, H. and Motoyama, H.. 1999. The relationship among accumulation rate, stable isotope ratio and surface temperature on the plateau of east Dronning Maud Land, Antarctica. Polar Meteorol. Glaciol. 13, 43–52.
Shiraiwa, T., Shoji, H., Saito, T., Yokoyama, K. and Watanabe, O.. 1996. Structure and dielectric properties of surface snow along the traverse route from coast to Dome Fuji Station, Queen Maud Land, Antarctica. Proc. NIPR Symp. Polar Meteorol. Glaciol. 10, 1–12.
Uratsuka, S., Maeno, H., Suitz, T. and Fisher, D.A.. 2000. Developmentand field experiment of L-band high-resolution ice-radar. IEICE Trans. Commun., E83B(9), 1969–1977.
Watanabe, O. and16 others. 1999. Basic analyses of Dome Fuji deep ice core. Part 1: stable oxygen and hydrogenisotope ratios, major chemical compositions and dust concentration. Polar Meteorol. Glaciol., 13, 83–89.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed