Skip to main content Accessibility help
×
Home

Pre-melt-season sediment plume variability at Jökulsárlón, Iceland, a preliminary evaluation using in-situ spectroradiometry and satellite imagery

  • Richard Hodgkins (a1), Robert Bryant (a2), Eleanor Darlington (a1) and Mark Brandon (a3)

Abstract

High-latitude atmospheric warming is impacting freshwater cycling, requiring techniques for monitoring the hydrology of sparsely-gauged regions. The submarine runoff of tidewater glaciers presents a particular challenge. We evaluate the utility of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery for monitoring turbid meltwater plume variability in the glacier lagoon Jökulsárlón, Iceland, for a short interval before the onset of the main melt season. Total Suspended Solids concentrations (TSS) of surface waters are related to remotely-sensed reflectance via empirical calibration between in-situ-sampled TSS and reflectance in a MODIS band 1-equivalent wavelength window. This study differs from previous ones in its application to an overturning tidewater glacier plume, rather than one derived from river runoff. The linear calibration improves on previous studies by facilitating a wider range of plume metrics than areal extent, notably pixel-by-pixel TSS values. Increasing values of minimum plume TSS over the study interval credibly represent rising overall turbidity in the lagoon as melting accumulates. Plume extent responds principally to consistently-strong offshore winds. Further work is required to determine the temporal persistence of the calibration, but remote plume observation holds promise for monitoring hydrological outputs from ungauged or ungaugeable systems.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Pre-melt-season sediment plume variability at Jökulsárlón, Iceland, a preliminary evaluation using in-situ spectroradiometry and satellite imagery
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Pre-melt-season sediment plume variability at Jökulsárlón, Iceland, a preliminary evaluation using in-situ spectroradiometry and satellite imagery
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Pre-melt-season sediment plume variability at Jökulsárlón, Iceland, a preliminary evaluation using in-situ spectroradiometry and satellite imagery
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
Arendt, KE and 6 others (2011) Effects of suspended sediments on copepods feeding in a glacial influenced sub-Arctic fjord. J. Plankton Res., 33, 15261537 (doi: 10.1093/plankt/fbr054)
Bergström, S and 31 others (2007) Impacts of climate change on river runoff, glaciers and hydropower in the Nordic area. Joint Final Report from the CE Hydrological Models and Snow and Ice Groups. CE Rep. No. 6, The CE Project, Reykjavík
Björnsson, H and Pálsson, F (2008) Icelandic glaciers. Jökull, 58, 365386
Björnsson, H, Pálsson, F and Gudmundsson, S (2001) Jökulsárlón at Breiðamerkursandur, Vatnajökull, Iceland: 20th century changes and future outlook. Jökull, 50, 118
Bowers, DG, Boudjelas, S and Harker, GEL (1998) The distribution of fine suspended sediments in the surface waters of the Irish Sea and its relation to tidal stirring. Int. J. Remote Sens., 14, 27892805
Brandon, M, Hodgkins, R, Björnsson, H and Ólaffson, J (2013) Hydrographic measurements in Jökulsárlón lagoon, Iceland. Am. Geophys. Union [Abstr. OS11A-164]
Chen, S and 5 others (2015) Estimating wide range Total Suspended Solids concentrations from MODIS 250-m imageries: an improved method. ISPRS J. Photogramm. Remote Sens., 99, 5869 (doi: 10.1016/j.isprsjprs.2014.10.006)
Chu, VW (2013) Greenland ice sheet hydrology: a review. Prog. Phys. Geog., 38(1), 136 (doi: 10.1177/0309133313507075)
Chu, VW and 5 others (2009) Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet. J. Glaciol., 55, 10721082 (doi: 10.3189/002214309790794904)
Chu, VW, Smith, LC, Rennermalm, AK, Forster, RR and Box, JE (2012) Hydrologic controls on coastal suspended sediment plumes around the Greenland ice sheet. Cryosphere, 6, 119 (doi: 10.5194/tc-6-1-2012)
Church, JA and 13 others (2013) Sea level change. In Stocker, TF and 10 others eds. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA
Cottier, F and 5 others (2005) Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard. J. Geophys. Res., 110(C122005) (doi: 10.1029/2004JC002757)
Curran, PJ and Novo, EMM (1988) The relationship between suspended sediment concentration and remotely sensed spectral radiance: a review. J. Coastal Res., 4(3), 351368
Dowdeswell, JA and Cromack, M (1991) Behavior of a glacier-derived suspended sediment plume in a small Arctic inlet. J. Geol., 99, 111123
Doxaran, D, Froidefond, J-M, Lavender, S and Castaing, P (2002) Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations. Remote Sens. Environ., 81(1), 149161 (doi: 10.1016/S0034-4257(01)00341-8)
Gade, HG (1979) Melting of ice in sea water: a primitive model with application to the Antarctic ice shelf and icebergs. J. Phys. Oceanogr., 9(1), 189198 (doi: 10.1175/1520-0485(1979) 009<0189:MOIISW>2.0.CO;2)
Halverson, MJ and Pawlowicz, R (2008) Estuarine forcing of a river plume by river flow and tides. J. Geophys. Res., 113(C09033) (doi: 10.1029/2008JC004844)
Hodgkins, R, Cooper, R, Wadham, J and Tranter, M (2003) Suspended sediment fluxes in a high-Arctic glacierised catchment: implications for fluvial sediment storage. Sed. Geol., 162, 105117
Hodgkins, R, Cooper, R, Tranter, M and Wadham, J (2013) Drainage-system development in consecutive melt seasons at a polythermal, Arctic glacier, evaluated by flow-recession analysis and linear-reservoir simulation. Water Resour. Res., 49(7), 42304243 (doi: 10.1002/wrcr.20257)
Hu, C and 5 others (2004) Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL. Remote Sens. Environ., 93(3), 423441 (doi: 10.1016/j.rse.2004.08.007)
Hudson, B and 5 others (2014) MODIS observed increase in duration and spatial extent of sediment plumes in Greenland fjords. Cryosphere, 8(4), 11611176 (doi: 10.5194/tc-8-1161-2014)
Jóhannesson, H (1994) Coastal erosion near the bridges across Jökulsá á Breiðamerkursandi in southeastern Iceland. In Viggósson, G ed. Proceedings of the international coastal symposium, Höfn, The Icelandic Harbour Authority, Iceland, 405414
Jóhannesson, T and 14 others (2006) The impact of climate change on glaciers and glacial runoff in the Nordic countries. In Proc. European Conference of Impacts of Climate Change on Renewable Energy Sources, Reykjavík, Iceland
Jóhannesson, T and 13 others (2007) Effect of climate change on hydrology and hydro-resources in Iceland. Final Report of the VO-Project, OS–2007/011
Joughin, I, Alley, R and Holland, D (2012) Ice-sheet response to oceanic forcing. Science, 338, 11721176 (doi: 10.1126/science.1226481)
Lihan, T, Saitoh, S-I, Iida, T, Hirawake, T and Iida, K (2008) Satellite-measured temporal and spatial variability of the Tokachi River plume. Estuarine Coastal Shelf Sci., 78(2), 237249 (doi: 10.1016/j.ecss.2007.12.001)
McGrath, D and 5 others (2010) Sediment plumes as a proxy for local ice-sheet runoff in Kangerlussuaq Fjord, West Greenland. J. Glaciol., 56(199), 813821 (doi: 1 0.3189/002214310794457227)
Miller, RL and McKee, BA (2004) Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens. Environ., 93(1–2), 259266 (doi: 10.1016/j.rse.2004.07.012)
Sciascia, R, Straneo, F, Cenedese, C and Heimbach, P (2013) Seasonal variability of submarine melt rate and circulation in an East Greenland fjord. J. Geophys. Res., 118(5), 24922506 (doi: 10.1002/jgrc.20142)
Statham, PJ, Skidmore, M and Tranter, M (2008) Inputs of glacially derived dissolved and colloidal iron to the coastal ocean and implications for primary productivity. Global Biogeochem. Cy., 22, 111 (doi: 10.1029/2007GB003106)
Straneo, F and 15 others (2013) Challenges to understand the dynamic response of Greenland's marine terminating glaciers to oceanic and atmospheric forcing. Bull. Am. Met. Soc., 94 (doi: 10.1175/BAMS-D-12-00100.1)
Stumpf, RP, Gelfenbaum, G and Pennock, JR (1993) Wind and tidal forcing of a buoyant plume, Mobile Bay, Alabama. Cont. Shelf Res., 13(11), 12811301
Tedstone, AJ and Arnold, NS (2012) Automated remote sensing of sediment plumes for identification of runoff from the Greenland ice sheet. J. Glaciol., 58(210), 699712 (doi: 10.3189/2012JoG11J204)
Thomas, AC and Weatherbee, RA (2006) Satellite-measured temporal variability of the Columbia River plume. Remote Sens. Environ., 100(2), 167178 (doi: 10.1016/j.rse.2005.10.018)
Tinder, P (2012) Ocean-ice interactions at Breiðamerkurjökull glacier, Southeast Iceland. (Unpublished MSc thesis, Ohio State University, USA)
Vermote, EF and Vermeulen, A (1999) Atmospheric Correction Algorithm: Spectral Reflectances (MOD09). Version 4.0. Algorithm Technical Background Document, NASA Contract NAS5-96062, 107 pp
Víkingsson, S (1991) The south coast of Iceland. Shoreline changes according to maps and photographs. Orkustofnun, OS-91042/VOD-07 B, 7 pp (in Icelandic)
Voytenko, D and 7 others (2015a) Multi-year observations of Breiðamerkurjökull, a marine-terminating glacier in southeastern Iceland, using terrestrial radar interferometry. J. Glac., 61(225), 4254 (doi: 10.3189/2015JoG14J099)
Voytenko, D and 5 others (2015b) Observations of inertial currents in a lagoon in southeastern Iceland using terrestrial radar interferometry and automated iceberg tracking. Comp. Geosci., 82, 2330 (doi: 10.1016 /j.cageo.2015.05.012)
Whitney, MM and Garvine, RW (2005) Wind influence on a coastal buoyant outflow. J. Geophys. Res., 110(C03014) (doi: 10.1029/2003JC002261)

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed