Skip to main content Accessibility help
×
Home

The physical basis for a dynamic Antarctic sea-ice model for use with an atmospheric GCM

  • W.F. Budd (a1), Ian Simmonds (a1) and Xingren Wu (a1)

Abstract

An observed ocean-drift data set is used as the basis of a wind-driven coupled ocean-sea-ice-atmosphere model including interaction and feedback. The observed characteristics of the Antarctic sea ice are described including the ice thickness, ice concentration and horizontal advection. The atmospheric model computes heat fiuxes, sea-ice growth, changes in concentration and advection. Sensitivity studies show reasonable and stable simulations of the observed sea-ice characteristics for the present mean Antarctic winter climate. The response times and feedbacks of the ice-atmosphere system as represented by the model appear to allow scope for the development of some persistence of anomalies.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The physical basis for a dynamic Antarctic sea-ice model for use with an atmospheric GCM
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The physical basis for a dynamic Antarctic sea-ice model for use with an atmospheric GCM
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The physical basis for a dynamic Antarctic sea-ice model for use with an atmospheric GCM
      Available formats
      ×

Copyright

References

Hide All
Ackley, S.F. 1979. Mass-balance aspects of Weddell Sea pack ice. J. Glaciol., 24 (24), 391405.
Allison, I. 1989. The East Antarctic sea ice zone: ice characteristics and drift. Geo Journal, 18 (18), 103115.
Budd, W.F. 1982. The role of Antarctica in Southern Hemisphere weather and climate. Aust. Meteorol. Mag., 30 (30), 265272.
Budd, W.F. 1986. The Southern Hemisphere circulation of atmosphere ocean and sea ice. Proceedings of the Second international Conference on Southern Hemisphere Meteorology. Boston, MA, American Meteorological Society, 101106.
Flato, G.M. and Hibler, III., W.D. 1990. On a simple sea-ice dynamics model for climate studies. Ann. Glaciol, 14, 7277.
Flato, G.M. and Hibler, III., W.D. In press. On modelling pack ice as a cavitating fluid. J. Phys. Oceanogr.
Grotch, S.L. 1988. Regional tntercomparisons of general circulation model predictions and historical climate data. Washington, DC, United States Department of Energy. (Report DOE/NBB-0084.)
Hamley, T.C. and Budd, W.F. 1986. Antarctic iceberg distribution and dissolution. J. Glacial., 32 (32), 242251.
Hibler, III., W.D. 1980. Modeling a variable thickness ice cover. Mon. Weather Rev., 108 (108), 19431973.
Hibler, III., W.D. and Ackley, S.F. 1983. Numerical simulation of the Wcddcll Sea pack ice. J. Geophys. Res., 88 (C5), 28732887.
Jacka, T.H., Allison, I., Thwaitcs, R., and Wilson, J,C. 1987. Characteristics of the seasonal sea ice of East Antarctica and comparisons with satellite observations. Ann. Glaciol, 9, 8591.
Levitus, S. 1982. Climatological atlas of the world ocean. NOAA Prof. Pap. 13.
Mechl, G.H. 1980. Observced world ocean seasonal surface currents on a 5° grid. Boulder, CO, National Center for Atmospheric Research.
Mikolajewicz, U. and E., Maier-Reimer. 1990. Internal secular variability in an ocean general circulation model. Hamburg, Max-Plank-Institut für Meteorologie. (Report 50.)
Parkinson, C.L. and Bindschadler, R.A. 1984. Response of Antarctic sea ice to uniform atmospheric temperature increases. In Hansen, J.E. Takahashi, T., eds. Climate processes and climate sensitivity. Washington, DC, American Geophysical Union, 254–264. (Geophysical Monograph 29.)
Parkinson, C.L. and Cavalieri, D.J. 1982. Interannual sea-ice variations and sea-ice/atmosphere interactions in the Southern Ocean, 1973–1975. Ann. Glacial. 3, 249254.
Parkinson, C.L. and Washington, W.M. 1979. A large-seale numerical model of sea ice. J. Geophys, Res., 84 (C1), 311337.
Schlesinger, Μ.Ε. and J.Mitchell, F.B. 1985. Model projections of the equilibrium climatic response to increased carbon dioxide. In MacCracken, M.C. Luther, F.M., eds. Projecting the climatic, effects of increasing carborn dioxide. Washington, DC, United States Department of Energy, 81147. (Report DOE/ER-0237.)
Schutz, C. and Gates, W.L. 1974. Supplemental global climatic data: July. Santa Monica, CA, The Rand Corporation.
Simmonds, I. and Budd, W.F. 1990. A simple parameterization of ice leads in a general circulation model, and the sensitivity of climate to change in Antarctic ice concentration. Ann. Glaciol., 14, 266269.
Stösscl, Α., Lemke, P. and Owens, W.B. 1989. Coupled sea ice – mixed layer simulations for the Southern Ocean. Hamburg, Max-Plank-Institut für Meteorologie. (Report 30.)
Tchernia, P. and Jcannin, P.F. 1983. Quelques aspects de la circulation océanique antarctique révélés par l’observation de la dérive d’icebergs (1972–1983). Paris, Laboratoire d’Océanographie Physique du Muséum National d’Histoire Naturelle
Zwally, H.J., Comiso, J.C., Parkinson, C.L., Campbell, W.J., Carscy, F.D., and Gloersen., P. 1983. Antarctic Sea ice, 1973–1976: satellite passive-microwave observations. Washington, DC, National Aeronautics and Space Administration. (NASA SP-459.)

Related content

Powered by UNSILO

The physical basis for a dynamic Antarctic sea-ice model for use with an atmospheric GCM

  • W.F. Budd (a1), Ian Simmonds (a1) and Xingren Wu (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.