Skip to main content Accessibility help
×
Home

Parameter uncertainty, refreezing and surface energy balance modelling at Austfonna ice cap, Svalbard, 2004-08

  • Torbjørn I. Østby (a1), Thomas V. Schuler (a1), Jon Ove Hagen (a1), Regine Hock (a2) (a3) and Carleen H. Reijmer (a4)...

Abstract

We apply a physically based coupled surface energy balance and snowpack model to a site close to the equilibrium line on Austfonna ice cap, Svalbard, over the 2004-08 melt seasons, to explain contributions to the energy available for melting and to quantify the significance of refreezing. The model is forced using in situ meteorological measurements and precipitation downscaled from ERA-Interim reanalysis. Applying a Monte Carlo approach to determine the tunable parameters of the model, we estimate the uncertainty related to the choice of parameter values. Multiple criteria are evaluated to identify well-performing parameter combinations, evaluating the model performance with respect to longwave outgoing radiation, snow and ice temperatures and surface displacement. On average, over the investigated melt seasons (1 June to 15 September) net radiation and sensible heat contributed 90 ± 2% and 10 ± 2%, respectively, to the mean energy available for melting snow and ice. The energy consumed by subsurface heat exchange reduced runoff by 15±2% in 2004 and 49±3% in 2008. Refreezing of meltwater and rain was estimated to be 0.37 ± 0.04 m w.e. a-1 on average over the five seasons, which represents a considerable reduction of mass loss during summer. Our findings suggest that refreezing potentially exerts a decisive control on glacier mass balance in persistently snow- or firn-covered areas.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Parameter uncertainty, refreezing and surface energy balance modelling at Austfonna ice cap, Svalbard, 2004-08
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Parameter uncertainty, refreezing and surface energy balance modelling at Austfonna ice cap, Svalbard, 2004-08
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Parameter uncertainty, refreezing and surface energy balance modelling at Austfonna ice cap, Svalbard, 2004-08
      Available formats
      ×

Copyright

References

Hide All
AMAP (2011) Snow, water, ice and permafrost in the Arctic (SWIPA): climate change and the cryosphere. Arctic Monitoring and Assessment Programme (AMAP), Oslo
Andreas, EL (1987) A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Bound.-Layer Meteorol., 38(1–2), 159184 (doi: 10.1007/BF00121562)
Arendt, A (1999) Approaches to modelling the surface albedo of a high Arctic glacier. Geogr. Ann. A, 81(4), 477487
Arnold, NS and Rees, WG (2003) Self-similarity in glacier surface characteristics. J. Glaciol., 49(167), 547554 (doi: 10.3189/ 172756503781830368)
Arnold, NS, Rees, WG, Hodson, AJ and Kohler, J (2006) Topographic controls on the surface energy balance of a high Arctic valley glacier. J. Geophys. Res., 111(F2), F02011 (doi: 10.1029/ 2005JF000426)
Beven, K and Freer, J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J. Hydrol., 249(1–4), 1129 (doi: 10.1016/S0022-1694(01)00421-8)
Bøggild, CE, Forsberg, R and Reeh, N (2005) Meltwater retention in a transect across the Greenland ice sheet. Ann. Glaciol., 40, 169173 (doi: 10.3189/172756405781813546)
Bougamont, M, Bamber, JL and Greuell, W (2005) A surface mass balance model for the Greenland Ice Sheet. J. Geophys. Res., 110(F4), F04018 (doi: 10.1029/2005JF000348)
Braithwaite, RJ (2009) Calculation of sensible-heat flux over a melting ice surface using simple climate data and daily measurements of ablation. Ann. Glaciol., 50(50), 915 (doi: 10.3189/172756409787769726)
Brock, BW, Willis, IC and Sharp, MJ (2006) Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d’Arolla, Switzerland. J. Glaciol., 52(177), 281297 (doi: 10.3189/172756506781828746)
Church, JA and 9 others (2011) Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett., 38(18), L18601 (doi: 10.1029/2011GL048794)
Crochet, P, Jóhannesson, T and Jonsson, T (2007) Estimating the spatial distribution of precipitation in Iceland using a linear model of orographic precipitation. J. Hydromet., 8(6), 12851306 (doi: 10.1175/2007JHM795.1)
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Oxford
Dee, DP and 35 others (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137(656), 553597 (doi: 10.1002/qj.828)
Douville, H, Royer, JF and Mahfouf, JF (1995) A new snow parameterization for the Meteo-France climate model. Part I. Validation in stand-alone experiments. Climate Dyn., 12(1), 2135 (doi: 10.1007/BF00208760)
Dowdeswell, JA, Drewry, DJ, Cooper, APR, Gorman, MR, Liestøl, O and Orheim, O (1986) Digital mapping of the Nordaustlandet ice caps from airborne geophysical investigations. Ann. Glaciol., 8, 5158
Dunse, T, Schuler, TV, Hagen, JO, Eiken, T, Brandt, O and Høgda, KA (2009) Recent fluctuations in the extent of the firn area of Austfonna, Svalbard, inferred from GPR. Ann. Glaciol., 50, 155162 (doi: 10.3189/172756409787769780)
Fitzgerald, PW, Bamber, JL, Ridley, JK and Rougier, JC (2012) Exploration of parametric uncertainty in a surface mass balance model applied to the Greenland ice sheet. J. Geophys. Res., 117(F1), F01021 (doi: 10.1029/2011JF002067)
Førland, EJ, Hanssen-Bauer, I and Nordli, (1997) Climate statistics and long-term series of temperature and precipitation at Svalbard and Jan Mayen. DNMI Rapp. 21/97 KLIMA. Norsk Meteorologisk Institutt, Oslo
Giesen, RH and Oerlemans, J (2012) Global application of a surface mass balance model using gridded climate data. Cryos. Discuss., 6(2), 14451490 (doi: 10.5194/tcd-6-1445-2012)
Greuell, JW and Konzelmann, T (1994) Numerical modeling of the energy balance and the englacial temperature of the Greenland ice sheet: calculations for the ETH-Camp location (West Greenland, 1155 m a.s.l.). Global Planet. Change, 9(1–2), 91114
Hanssen-Bauer, I and Førland, EJ (1998) Long-term trends in precipitation and temperature in the Norwegian Arctic: can they be explained by changes in atmospheric circulation patterns? Climatic Res., 10(2), 143153
Herron, MM and Langway, CC Jr. (1980) Firn densification: an empirical model. J. Glaciol., 25(93), 373385
Hock, R (2005) Glacier melt: a review on processes and their modelling. Progr. Phys. Geogr., 29(3), 362391 (doi: 10.1191/0309133305pp453ra)
Hock, R and Holmgren, B (2005) A distributed surface energy-balance model for complex topography and its application to Storglaciaren, Sweden. J. Glaciol. , 51(172), 2536 (doi: 10.3189/172756505781829566)
Janssen, PHM and Heuberger, PSC (1995) Calibration of process-oriented models. Ecol. Model., 83(1–2), 5566 (doi: 10.1016/ 0304-3800(95)00084-9)
Jansson, M (1901) Uber die Warmeleitungsfahigkeit des Schnees. Ofversıgt af Kongl. Vetenskaps-Akad. Forhandlinger, 58, 207222
Jarosch, AH, Anslow, FS and Clarke, GKC (2012) High-resolution precipitation and temperature downscaling for glacier models. Climate Dyn., 38(1–2), 391409 (doi: 10.1007/s00382-010-0949-1)
Lefebre, F, Gallee, H, Ypersele, JP and Greuell, W (2003) Modeling of snow and ice melt at ETH camp (West Greenland): a study of surface albedo. J. Geophys. Res., 108(D8), 4231 (doi: 10.1029/ 2001JD001160)
Li, J and Zwally, HJ (2004) Modeling the density variation in the shallow firn layer. Ann. Glaciol., 38, 309313 (doi: 10.3189/ 172756404781814988)
MacDougall, AH, Wheler, BA and Flowers, GE (2011) A preliminary assessment of glacier melt-model parameter sensitivity and transferability in a dry subarctic environment. Cryosphere, 5(4), 10111028 (doi: 10.5194/tc-5-1011-2011)
Madsen, H (2000) Automatic calibration of a conceptual rainfall– runoff model using multiple objectives. J. Hydrol., 235(3–4), 276288 (doi: 10.1016/S0022-1694(00)00279-1)
Meier, MF and 7 others (2007) Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317(5841), 10641067 (doi: 10.1126/science.1143906)
Michel, D, Philipona, R, Ruckstuhl, C, Vogt, R and Vuilleumier, L (2008) Performance and uncertainty of CNR1 Net Radiometers during a one-year field comparison. J. Atmos. Ocean. Technol., 25(3), 442451 (doi: 10.1175/2007JTECHA973.1)
Moholdt, G and Kaab, A (2012) A new DEM of the Austfonna ice cap by combining differential SAR interferometry with ICESat laser altimetry. Polar Res., 31 (doi: 10.3402/polar.v31i0.18460)
Moholdt, G, Hagen, JO, Eiken, T and Schuler, TV (2010) Geometric changes and mass balance of the Austfonna ice cap, Svalbard. Cryosphere, 4(1), 2134 (doi: 10.5194/tcd-3-857-2009)
Nash, JE and Sutcliffe, JV (1970) River flow forecasting through conceptual models. Part 1 . A discussion of principles. J. Hydrol., 10(3), 282290 (doi: 10.1016/0022-1694(70)90255-6)
Nordli, Ø (2010) The Svalbard airport temperature series. Bull. Geogr. Phys. Geogr. Ser., 3, 525
Ostin, R and Andersson, S (1991) Frost growth parameters in a forced air stream. Int. J. Heat Mass Transfer, 34(4–5), 10091017 (doi: 10.1016/0017-9310(91)90012-4)
Pellicciotti, F, Carenzo, M, Helbing, J, Rimkus, S and Burlando, P (2009) On the role of the subsurface heat conduction in glacier energy-balance modelling. Ann. Glaciol., 50(50), 1624 (doi: 10.3189/172756409787769555)
Pfeffer, WT, Meier, MF and Illangasekare, TH (1991) Retention of Greenland runoff by refreezing: implications for projected future sea level change. J. Geophys. Res., 96(C12), 117122 (doi: 10.1029/91JC02502)
Radic, V and Hock, R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nature Geosci., 4(2), 9194 (doi: 10.1038/ngeo1052)
Reeh, N (1991) Parameterization of melt rate and surface temperature on the Greenland ice sheet. Polarforschung, 59(3), 113128
Reijmer, CH and Hock, R (2008) Internal accumulation on Storglaciaren, Sweden, in a multi-layer snow model coupled to a distributed energy- and mass-balance model. J. Glaciol., 54(184), 6172 (doi: 10.3189/002214308784409161)
Reijmer, CH, Van den Broeke, MR, Fettweis, X, Ettema, J and Stap, LB (2012) Refreezing on the Greenland ice sheet: a comparison of parameterizations. Cryosphere, 6(4), 743762 (doi: 10.5194/tc-6-743-2012)
Rogers, JC, Yang, L and Li, L (2005) The role of Fram Strait winter cyclones on sea ice flux and on Spitsbergen air temperatures. Geophys. Res. Lett., 32(6), L06709 (doi: 10.1029/ 2004GL022262)
Rotschky, G, Schuler, TV, Haarpaintner, J, Kohler, J and Isaksson, E (2011) Spatio-temporal variability of snowmelt across Svalbard during the period 2000–08 derived from QuikSCAT/SeaWinds scatterometry. Polar Res., 30, 5963 (doi: 10.3402/polar.-v30i0.5963)
Rye, CJ, Arnold, NS, Willis, IC and Kohler, J (2010) Modelingthe surface mass balance of a high Arctic glacier using the ERA-40 reanalysis. J. Geophys. Res., 115(F2), F02014 (doi: 10.1029/2009JF001364)
Rye, CJ, Willis, IC, Arnold, NS and Kohler, J (2012) On the need for automated multiobjective optimization and uncertainty estimation of glacier mass balance models. J. Geophys. Res., 117(F2), F02005 (doi: 10.1029/2011JF002184)
Schneider, T and Jansson, P (2004) Internal accumulation in firn and its significance for the mass balance of Storglaciaren, Sweden. J. Glaciol., 50(168), 2534 (doi: 10.3189/ 172756504781830277)
Schuler, TV, Loe, E, Taurisano, A, Eiken, T, Hagen, JO and Kohler, J (2007) Calibrating a surface mass-balance model for Austfonna ice cap, Svalbard. Ann. Glaciol., 46, 241248 (doi: 10.3189/ 172756407782871783)
Schuler, TV, Crochet, P, Hock, R, Jackson, M, Barstad, I and Jóhannesson, T (2008) Distribution of snow accumulation on the Svartisen ice cap, Norway, assessed by a model of orographic precipitation. Hydrol. Process., 22(19), 39984008 (doi: 10.1002/hyp.7073)
Smith, RB and Barstad, I (2004) A linear theory of orographic precipitation. J. Atmos. Sci., 61(12), 13771391 (doi: 10.1175/ 1520-0469(2004)061<1377:ALTOOP>2.0.CO;2)
Sturm, M, Holmgren, J, Konig, M and Morris, K (1997) The thermal conductivity of seasonal snow. J. Glaciol., 43(143), 2641
Taurisano, A and 6 others (2007) The distribution of snow accumulation across Austfonna ice cap Svalbard: direct measurements and modelling. Polar Res. , 26(1), 713 (doi: 10.1111/j.1751-8369.2007.00004.x)
Van Dusen, MS (1929) Thermal conductivityofnon-metallic solids. In Washburn, EW ed. International critical tables of numerical data: physics, chemistry and technology. McGraw Hill, New York, 216217
Van Pelt, WJJ, Oerlemans, J, Reijmer, CH, Pohjola, VA, Pettersson, R and Van Angelen, JH (2012) Simulating melt, runoff and refreezing on Nordenskioldbreen, Svalbard, using a coupled snow and energy balance model. Cryosphere, 6(3), 641659 (doi: 10.5194/tc-6-641-2012)
Vrugt, JA, Gupta, HV, Bouten, W and Sorooshian, S (2003) A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour. Res., 39(8), 1201 (doi: 10.1029/2002WR001642)
Wheler, BA and Flowers, GE (2011) Glacier subsurface heat-flux characterizations for energy-balance modelling in the Donjek Range, southwest Yukon, Canada. J. Glaciol., 57(201), 121133 (doi: 10.3189/002214311795306709)
Woodward, J, Sharp, M and Arendt, A (1997) The influence of superimposed-ice formation on the sensitivity of glacier mass balance to climate change. Ann. Glaciol., 24, 186190
Wright, A, Wadham, J, Siegert, M, Luckman, A and Kohler, J (2005) Modelling the impact of superimposed iceon the mass balance of an Arctic glacier under scenarios of future climate change. Ann. Glaciol., 42, 277283 (doi: 10.3189/172756405781813104)
Wright, AP, Wadham, JL, Siegert, MJ, Luckman, A, Kohler, J and Nuttall, A-M (2007) Modeling the refreezing of meltwater as superimposed ice on a high Arctic glacier: a comparison of approaches. J. Geophys. Res., 112(F4), F04016 (doi: 10.1029/ 2007JF000818)
Zuo, Z and Oerlemans, J (1996) Modelling albedo and specific balance of the Greenland ice sheet: calculations for the Søndre Strømfjord transect. J. Glaciol., 42(141), 305317

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed