Skip to main content Accessibility help
×
Home

Modelling the mass balance of northwest Spitsbergen glaciers and responses to climate change

  • Kevin M. Fleming (a1), Julian A. Dowdeswell (a2) and Johannes Oerlemans (a3)

Abstract

An energy-balance model is used to calculate mass balance and equilibrium-line altitudes (ELAs) on two northwest Spitsbergen glaciers, Austre Brøggerbreen and Midre Lovénbreen, whose mass balances are at present negative, and for which greater than 20 year records of mass-balance data are available. The model takes meteorological data, ice-mass area distribution with altitude, and solar radiation as inputs. Modelling uses mean daily meteorological data from a nearby weather station, adjusted for altitude. Average net balances modelled for 1980–89 using models tuned to the decade’s average were –0.44 and –0.47 m w.e. for Lovénbreen and Brøggerbreen, respectively, compared with the measured averages of –0.27 and –0.36 m. Sensitivity tests on glacier response to greenhouse warming predict a net balance change of –0.61 m year–1 per °C temperature rise relative to today, and a rise in ELA of 90 m °C–1. Modelling of Little lee Age conditions in Spitsbergen suggests that a 0.6°C cooling or a precipitation increase of 23% would yield zero net mass balance for Lovénbreen and that further cooling would increase net balance by 0.30 m year–1 °C–1. Set in the context of similar modelling of southern Norwegian, Alpine and Greenland ice masses, these results support the suggestion that glaciers with a maritime influence (i.e. higher accumulation) are most sensitive to climate change, implying a gradient towards decreasing sensitivity as accumulation decreases eastward and with altitude in Svalbard.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Modelling the mass balance of northwest Spitsbergen glaciers and responses to climate change
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Modelling the mass balance of northwest Spitsbergen glaciers and responses to climate change
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Modelling the mass balance of northwest Spitsbergen glaciers and responses to climate change
      Available formats
      ×

Copyright

References

Hide All
Cattle, H. and Crossley, J.. 1995. Modelling Arctic climate change. Philos. Trans. R. Soc. London, Ser. A, 352 (1699), 201213.
Dowdeswell, J. A. 1995. Glaciers in the High Arctic and recent environmental change, Philas, Trans. R. Soc. London, Ser. A, 352 (1699), 321334.
Dowdeswell, J. A., Drewry, D. J., O. Liestøl and Orheim, O.. 1984a. Airborne radio echo sounding of sub-polar glaciers in Spitsbergen. Nor. Polarinst. Skr. 182.
Dowdeswell, J. A., Drewry, D. J., O. Liestøl and Orheim, O.. 1984b. Radio echo-sounding of Spitsbergen glaciers: problems in the interpretation of layer and bottom returns. J. Glaciol., 30 (104), 1621.
Dowdeswell, J. A., Drewry, D. J. and Sim, J. C.ões. 1990. Correspondence. Comments on: “6000-year climate records in an ice core from the Høghetta ice dome in northern Spitsbergen”. J. Glaciol., 36 (124), 353356.
Fujii, Y. and 10 others. 1990. 6000-year climate records in an ice core from the Høghetta ice dome in nonthern Spitsbergen. Ann. Glaciol., 14, 8589.
Hagen, J. O. 1988. Glacier mass balance investigations in the balance year 1986–87. Polar Res., 6 (2), 205209.
Hagen, J. O. and Liest, O.øl. 1987. Glacier mass balance investigations in the balance years 1984–85 and 1985–86. Polar Res., 5 (2), 261265.
Hagen, J. O. and Liest, O.øl. 1990. Long-term glacier mass-balance investigations to Svalbard, 1950–88. Ann. Glaciol., 14, 102106.
Hagen, J. O. and A. Sætrang. 1991. Radio-echo soundings of sub-polar glaciers with low-frequency radar. Polar Res., 9 (1), 99107.
Hanssen-Bauer, I., Kristensen SolÅs, M. and Steffensen, E. L.. 1990. The climate of Spitsbergen. Oslo, Norsk Meteorologisk Institutt. (Rapport 39/90.)
Kimball, B. A., Idso, S. B. and Aase, J. K.. 1982. A model of thermal radiation from partly cloudy and overcast skies. Water Resour. Res., 18, 931936.
Koster, E. A. 1991. Assessment of climate change impact in high-latitude regions. Terra, 103 (1) 313.
Lefauconnier, B. and Hagen, J. O.. 1990. Glaciers and climate in Svalbard: statistical analysis and reconstruction of the Brøggerbreen mass balance for the last 77 years. Ann. Glaciol., 14, 148152.
Liestøl, O. 1982. Glaciological work in 1981. Nor. Polarinst. Årbok, 1981, 4552.
Liestøl, O. 1983. Glaciological work in 1982. Nor. Polarinst. Årbok, 1982. 3743.
Liestøl, O. 1986. Glaciological investigations in the balance year 1983–84. Polar Res., 4 (l), 97101.
Liestøl, O. 1990. Glaciers in the Kongsfjorden area. Nor. Polarinst. Årbok, 1989, 5161.
Meier, M. F. 1984. Contribution of small glaciers to global sea level. Science, 226 (4681), 1418–1421.
Meier, M. F. 1990. Reduced rise in sea level. Nature, 343 (6254), 115116.
Norsk Polarinstitutt. 1979. Brøggerbreen, Vestre og Midre Lovénbreen, Spitsbergen–Svalbard. Oslo, Norsk Polarinstitutt. (Map sheet, Scale 1:20,000.)
Oerlemans, J. 1988. Simulation of historic glacier variations with a simple climate–glacier model, J. Glaciol., 34 (118), 333341.
Oerlemans, J. 1991. The mass balance of the Greenland ice sheet: sensitivity to climate change as revealed by energy-balance modelling. Holocene, 1 (1), 4049.
Oerlemans, J. 1992. Climate sensitivity of glaciers in Southern Norway: application of an energy-balance model to Nigardsbreen, Hellstugubreen and Alfotbreen. J. Glaciol., 38 (129), 223232.
Oerlemans, J. and Fortuin, J. P. F.. 1992. Sensitivity of glaciers and small ice caps to greenhouse warming. Science, 258 (5079), 115117.
Oerlemans, J. and Hoogendoorn, N. C.. 1989. Mass-balance gradients and climatic change. J. Glaciol., 35 (121), 399405.
Simões, J. C. 1990. Environmental interpretation from Svalbard ice cores. (Ph.D. thesis, University of Cambridge.)
Steffensen, E. L. 1982. The climate at Norwegian Arctic stations. Klima (Det Norske Meteorologiske Institutt( 5, 3044.
Stouffer, R. J., Manabe, S. and Bryan, K.. 1989. Interhemisphoric asymmetry in climate response to a gradual increase of atmospheric carbon dioxide. Nature, 342 (6250), 660662.
Walraven, R. 1978. Calculating the position of the Sun. Sol. Energy, 20, 393397.
Walsh, J. E. 1991. The Arctic as a bellwether. Nature, 352 (6330), 1920.

Modelling the mass balance of northwest Spitsbergen glaciers and responses to climate change

  • Kevin M. Fleming (a1), Julian A. Dowdeswell (a2) and Johannes Oerlemans (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed