Skip to main content Accessibility help
×
Home

Modelling the coupling of flood discharge with glacier flow during jökulhlaups

  • Jonathan Kingslake (a1) and Felix Ng (a1)

Abstract

We explore a mathematical model that couples together a thermomechanically evolving subglacial channel, distributed cavity drainage, and basal sliding along a subglacial flood path fed by a jökulhlaup lake. It allows water transfer between channel and cavities and a migrating subglacial water divide or ‘seal’ to form between floods. Notably, it accounts for full coupling between the lake and subglacial drainage in terms of both discharge and pressure, unlike models that neglect the pressure coupling by imposing a known history of lake discharge at the channel inlet. This means that flood hydrographic evolution and its impact on glacier motion are consistently determined by our model. Numerical simulations for a model alpine lake yield stable limit cycles simulating repeating jökulhlaups, with the channel drawing water from the cavities at a varying rate that modulates basal sliding during each flood. A wave of fast sliding propagates down-glacier at flood initiation, followed by deceleration as the growing channel sucks water from the cavities. These behaviours cannot be correctly simulated without the full coupling. We show that the flood’s peak discharge, its initiation threshold and the magnitude of the ‘fast sliding’ wave decrease with the background water supply to the cavities.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Modelling the coupling of flood discharge with glacier flow during jökulhlaups
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Modelling the coupling of flood discharge with glacier flow during jökulhlaups
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Modelling the coupling of flood discharge with glacier flow during jökulhlaups
      Available formats
      ×

Copyright

References

Hide All
Anderson, RS, Walder, JS, Anderson, SP, Trabant, DC and Fountain, AG (2005) The dynamic response of Kennicott Glacier, Alaska, USA, to the Hidden Creek Lake outburst flood. Ann. Glaciol., 40, 237242 (doi: 10.3189/172756405781813438)
Bartholomaus, TC, Anderson, RS and Anderson, SP (2011) Growth and collapse of the distributed subglacial hydrologic system of Kennicott Glacier, Alaska, USA, and its effects on basal motion. J. Glaciol., 57(206), 9851002 (doi: 10.3189/ 002214311798843269)
Bartholomew, ID and 6 others (2011) Seasonal variations in Greenland Ice Sheet motion: inland extent and behaviour at higher elevations. Earth Planet. Sci. Lett., 307(3–4), 271278 (doi: 10.1016/j.epsl.2011.04.014)
Bindschadler, R (1983) The importance of pressurized subglacial water in separation and sliding at the glacier bed. J. Glaciol., 29(101), 319
Björnsson, H (2003) Subglacial lakes and Jökulhlaups in Iceland. Global Planet. Change, 35(3–4), 255271 (doi: 10.1016/S0921-8181(02)00130-3)
Clarke, GKC (1982) Glacier outburst floods from ‘Hazard Lake’, Yukon Territory, and the problem of flood magnitude prediction. J. Glaciol., 28(98), 321
Clarke, GKC (2003) Hydraulics of subglacial outburst floods: new insights from the Spring–Hutter formulation. J. Glaciol., 49(165), 299313 (doi: 10.3189/172756503781830728)
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers 4th edn. Butterworth-Heinemann, Oxford
Das, SB and 6 others (2008) Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science, 320(5877), 778781 (doi: 10.1126/science.1153360)
Evatt, GW and Fowler, AC (2007) Cauldron subsidence and subglacial floods. Ann. Glaciol., 45, 163168 (doi: 10.3189/ 172756407782282561)
Flowers, GE, Björnsson, H, Palsson, R and Clarke, GKC (2004) A coupled sheet–conduit mechanism for Jökulhlaup propagation. Geophys. Res. Lett., 31(5), L05401 (doi: 10.1029/ 2003GL019088)
Fowler, AC (1999) Breaking the seal at Grımsvotn, Iceland. J. Glaciol., 45(151), 506516
Fowler, AC (2009) Dynamics of subglacial floods. Proc. R. Soc. London, Ser. A, 465(2106), 18091828 (doi: 10.1098/rspa. 2008.0488)
Hewitt, IJ (2011) Modelling distributed and channelized subglacial drainage: the spacing of channels. J. Glaciol., 57(202), 302314 (doi: 10.3189/002214311796405951)
Hewitt, IJ and Fowler, AC (2008) Seasonal waves on glaciers. Hydrol. Process., 22(19), 39193930 (doi: 10.1002/hyp.7029)
Hewitt, IJ, Schoof, C and Werder, MA (2012) Flotation and free surface flow in a model for subglacial drainage. Part 2. Channel flow. J. Fluid Mech., 702, 157187 (doi: 10.1017/jfm.2012.166)
Jóhannesson, T (2002) Propagation of a subglacial flood wave during the initiation of a Jökulhlaup. Hydrol. Sci. J., 47(3), 417434
Kamb, B (1987) Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res., 92(B9), 90839100 (doi: 10.1029/JB092iB09p09083)
Kessler, MA and Anderson, RS (2004) Testing a numerical glacial hydrological model using spring speed-up events and outburst floods. Geophys. Res. Lett., 31(18), L18503 (doi: 10.1029/ 2004GL020622)
Magnusson, E, Rott, H, Björnsson, H and Palsson, F (2007) The impact of Jökulhlaups on basal sliding observed by SAR interferometry on VatnaJökull, Iceland. J. Glaciol., 53(181), 232240 (doi: 10.3189/172756507782202810)
Magnusson, E and 8 others (2011) Localized uplift of VatnaJökull, Iceland: subglacial water accumulation deduced from InSAR and GPS observations. J. Glaciol., 57(203), 475484 (doi: 10.3189/002214311796905703)
Mayer, C, Lambrecht, A, Hagg, W, Helm, A and Scharrer, K (2008) Post-drainage ice dam response at Lake Merzbacher, Inylchek Glacier, Kyrgyzstan. Geogr. Ann. A, 90(1), 8796 (doi: 10.1111/ j.1468-0459.2008.00336.x)
Ng, FSL (1998) Mathematical modelling of subglacial drainage and erosion. (DPhil thesis, University of Oxford)
Ng, F and Björnsson, H (2003) On the Clague–Mathews relation for Jökulhlaups. J. Glaciol., 49(165), 161172 (doi: 10.3189/ 172756503781830836)
Ng, F and Liu, S (2009) Temporal dynamics of a Jökulhlaup system. J. Glaciol., 55(192), 651665 (doi: 10.3189/ 002214309789470897)
Ng, F, Liu, S, Mavlyudov, B and Wang, Y (2007) Climatic control on the peak discharge of glacier outburst floods. Geophys. Res. Lett., 34(21), L21503 (doi: 10.1029/2007GL031426)
Nye, JF (1976) Water flow in glaciers: Jökulhlaups, tunnels and veins. J. Glaciol., 17(76), 181207
Pimentel, S and Flowers, GE (2011) A numerical study of hydrologically driven glacier dynamics and subglacial flooding. Proc. R. Soc. London, Ser. A, 467(2126), 537558 (doi: 10.1098/ rspa.2010.0211)
Riesen, P, Sugiyama, S and Funk, M (2010) The influence of the presence and drainage of an ice-marginal lake on the flow of Gornergletscher, Switzerland. J. Glaciol., 56(196), 278286 (doi: 10.3189/002214310791968575)
Schoof, C (2010) Ice-sheet acceleration driven by melt supply variability. Nature, 468(7325), 803806 (doi: 10.1038/ nature09618)
Spring, U and Hutter, K (1981) Numerical studies of Jökulhlaups. Cold Reg. Sci. Technol., 4(3), 227244
Sugiyama, S, Bauder, A, Weiss, P and Funk, M (2007) Reversal of ice motion during the outburst of a glacier-dammed lake on Gornergletscher, Switzerland. J. Glaciol., 53(181), 172180 (doi: 10.3189/172756507782202847)
Sugiyama, S, Bauder, A, Huss, M, Riesen, P and Funk, M (2008) Triggering and drainage mechanisms of the 2004 glacier-dammed lake outburst in Gornergletscher, Switzerland. J. Geophys. Res., 113(F4), F04019 (doi: 10.1029/ 2007JF000920)
Sugiyama, S, Bauder, A, Riesen, P and Funk, M (2010) Surface ice motion deviating toward the margins during speed-up events at Gornergletscher, Switzerland. J. Geophys. Res., 115(F3), F03010 (doi: 10.1029/2009JF001509)
Sundal, AV, Shepherd, A, Nienow, P, Hanna, E, Palmer, S and Huybrechts, P (2011) Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature, 469(7331), 521524 (doi: 10.1038/nature09740)
Walder, JS (1986) Hydraulics of subglacial cavities. J. Glaciol., 32(112), 439445
Zwally, HJ, Abdalati, W, Herring, T, Larson, K, Saba, J and Steffen, K (2002) Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297(5579), 218222 (doi: 10.1126/ science.1072708)

Related content

Powered by UNSILO

Modelling the coupling of flood discharge with glacier flow during jökulhlaups

  • Jonathan Kingslake (a1) and Felix Ng (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.