Skip to main content Accessibility help
×
Home

Measuring stable isotopes of hydrogen and oxygen in ice by means of laser spectrometry: the Bølling transition in the Dye-3 (south Greenland) ice core

  • Radboud van Trigt (a1), Harro A. J. Meijer (a1), Arny E. Sveinbjörnsdóttir (a2), Sigfús J. Johnsen (a2) (a3) and Erik R.Th. Kerstel (a1)...

Abstract

We report on the first application of a new technique in ice-core research, based on direct absorption infrared laser spectrometry (LS), for measuring 2H, 17Oand 18O isotope ratios. the data are used to calculate the deuterium excess d (defined as δ2H– 8δ18O) for a section of the Dye-3 (south Greenland) deep ice core around the Bølling transition (14 500 BP). the precision of LS is slightly better than that of most traditional methods for deuterium, but not for the oxygen isotopes. the ability to measure δ17O is new and is used here to improve the precision of the δ18O determination. Still, the final precision for δ18O remains inferior to traditional isotope ratio mass spectrometry (IRMS). Therefore, deuterium excess was calculated from a combination of the LS and IRMS isotope determinations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Measuring stable isotopes of hydrogen and oxygen in ice by means of laser spectrometry: the Bølling transition in the Dye-3 (south Greenland) ice core
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Measuring stable isotopes of hydrogen and oxygen in ice by means of laser spectrometry: the Bølling transition in the Dye-3 (south Greenland) ice core
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Measuring stable isotopes of hydrogen and oxygen in ice by means of laser spectrometry: the Bølling transition in the Dye-3 (south Greenland) ice core
      Available formats
      ×

Copyright

References

Hide All
Armengaud, A., Koster, R.D., Jouzel, J. and Ciais, P.. 1998. Deuterium excess in Greenland snow: analysis with simple and complex models. J. Geophys. Res. , 103(D8), 89478953.
Bond, C.C. 1995. Climate and the conveyor. Nature , 377(6455), 383384.
Broecker, W.S., Peteet, D.M. and Rind, D.. 1985. Does the ocean–atmosphere system have more than one stable mode of operation? Nature , 315(6014), 2126.
Coplen, T.B. 1988. Normalization of oxygen and hydrogen isotope data. Chemical Geol., Isotope Geoscience Section , 72, 293297.
Cuffey, K.M., Clow, G.D., Alley, R.B., Stuiver, M., Waddington, E. D. and Saltus, R.W.. 1995. Large Arctic temperature change at the Wisconsin– Holocene glacial transition. Science , 270(5235), 455458.
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus , 16(4), 436468.
Dansgaard, W. and 6 others. 1982. A new Greenland deep ice core. Science , 218(4579),12731277.
Dansgaard, W., White, J.W. C. and Johnsen, S.J.. 1989. The abrupt termination of theYounger Dryas climate event. Nature , 339(6225), 532534.
Dansgaard, W. and 10 others. 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature , 364(6434), 218220.
Delmotte, M.,Masson, V., Jouzel, J. andMorgan, V.. 2000. A seasonal deuterium excess signal at Law Dome, coastal eastern Antarctica: a Southern Ocean signature. J. Geophys. Res. , 105(D6),71877197.
Fisher, D.A. 1991. Remarks on the deuterium excess in precipitation in cold regions. Tellus , 43B(5), 401407.
Gonfiantini, R. 1984. Advisory group meeting on stable isotope reference samples for geochemical and hydrological investigations. Vienna, International Atomic EnergyAgency. DirectorGeneral. (Report.)
Hammer, C.U. Clausen, H. B. and Tauber, H.. 1986. Ice-core dating of the Pleistocene/Holocene boundary applied to a calibration of the 14C time scale. Radiocarbon, Ser. A , 28(2), 286291.
Hansson, H.C. Swietlicki, E., Larsson, N. P.-O. and Johnsen, S.J.. 1993. PIXE analysis as a tool for dating of ice cores from the Greenland ice sheet. Nucl. Instrum.Methods Phys. Res., Ser. B , 75(1–4), 428434.
Johnsen, S.J., Dansgaard, W. and White, J.W.C.. 1989. The origin of Arctic precipitation under present and glacialconditions. Tellus , 41B(4),452468.
Johnsen, S.J. and 9 others. 1992. Irregular glacial interstadials recorded in a new Greenland ice core. Nature , 359(6393), 311313.
Johnsen, S.J., Dahl-Jensen, D., Dansgaard, W. and Gundestrup, N.S.. 1995. Greenland paleotemperatures derived from GRIP borehole temperature and ice core isotope profiles. Tellus , 47B(5), 624629.
Kerstel, E. R.Th., vanTrigt, R., Dam, N., Reuss, J. and Meijer, H.A. J.. 1999. Simultaneous determination of the 2H/1H, and 18O/16O isotope abundance ratios in water by means of laser spectrometry. Anal. Chem. , 71(23), 52975303.
Lippman, J. 2000. New IAEA RM reference sheets and experiences with re-evaluation of published data. Advisory Group Meeting on Stable Isotope Reference Materials and Laboratory Quality Assurance .Vienna, International Atomic EnergyAgency, Director general. (Report.)
Meijer, H. A. J. and Li, W.J.. 1998. The use of electrolysis for accurate δ17O and δ18O isotope measurements in water. Isotop. Environ. Health. Stud. , 34(1), 349369.
Ruddiman, W.F. and McIntyre, A.. 1981. The North Atlantic Ocean during the last deglaciation. Palaeogeogr., Palaeoclimatol., Palaeoecol. , 35(2–4),145214.
Van Trigt, R., Kerstel, E. R.Th., Visser, G.H. and J. Meijer, H.A.. 2001. Accurate stable isotope ratio measurements on highly enriched water samples by means of laser spectrometry. Anal. Chem. , 73(11), 24452452.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed