Skip to main content Accessibility help
×
Home

Measurements of turbulence transfer in the near-surface layer over the Antarctic sea-ice surface from April through November in 2016

  • Changwei Liu (a1), Zhiqiu Gao (a2) (a3), Qinghua Yang (a4) (a5), Bo Han (a4), Hong Wang (a2), Guanghua Hao (a6), Jiechen Zhao (a7), Lejiang Yu (a7), Linlin Wang (a3) and Yubin Li (a2)...

Abstract

The surface energy budget over the Antarctic sea ice from 8 April 2016 through 26 November 2016 are presented. From April to October, Sensible heat flux (SH) and subsurface conductive heat flux (G) were the heat source of surface while latent heat flux (LE) and net radiation flux (Rn) were the heat sink of surface. Our results showed larger downward SH (due to the warmer air in our site) and upward LE (due to the drier air and higher wind speed in our site) compared with SHEBA data. However, the values of SH in N-ICE2015 campaign, which located at a zone with stronger winds and more advection of heat in the Arctic, were comparable to our results under clear skies. The values of aerodynamic roughness length (z0m) and scalar roughness length for temperature (z0h), being 1.9 × 10−3 m and 3.7 × 10−5 m, were suggested in this study. It is found that snow melting might increase z0m. Our results also indicate that the value of log(z0h/z0m) was related to the stability of stratification. In addition, several representative parameterization schemes for z0h have been tested and a couple of schemes were found to make a better performance.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Measurements of turbulence transfer in the near-surface layer over the Antarctic sea-ice surface from April through November in 2016
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Measurements of turbulence transfer in the near-surface layer over the Antarctic sea-ice surface from April through November in 2016
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Measurements of turbulence transfer in the near-surface layer over the Antarctic sea-ice surface from April through November in 2016
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Zhiqiu Gao, E-mail: zgao@mail.iap.ac.cn and Qinghua Yang, E-mail: yangqh25@mail.sysu.edu.cn

References

Hide All
Andreas, EL (1987) A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Boundary-Layer Meteorology 38(1), 159184. doi: 10.1007/BF00121562.
Andreas, EL and 6 others (2010) Parameterizing turbulent exchange over sea ice in winter. Journal of Hydrometeorology 11(1), 87104. doi: 10.1175/2009JHM1102.1.
Andreas, EL (2011) A relationship between the aerodynamic and physical roughness of winter sea ice. Quarterly Journal of the Royal Meteorological Society 137(659), 15811588. doi: 10.1002/qj.842.
Andreas, EL, Tucker, WB III and Ackley, SF (1984) Atmospheric boundary-layer modification, drag coefficient, and surface heat flux in the Antarctic marginal ice zone. Journal of Geophysical Research: Oceans 89(C1), 649661. doi: 10.1029/JC089iC01p00649.
Bintanja, R and Van den Broeke, MR (1995) Momentum and scalar transfer coefficients over aerodynamically smooth Antarctic surface. Boundary-Layer Meteorology 74(1), 89111. doi: 10.1007/BF00715712.
Bourassa, MA and 16 others (2013) High-Latitude ocean and sea ice surface fluxes: challenges for climate research. Bulletin of the American Meteorological Society 94(3), 403423. doi: 10.1175/BAMS-D-11-00244.1.
Brunke, MA, Zhou, M, Zeng, X and Andreas, EL (2006) An intercomparison of bulk aerodynamic algorithms used over sea ice with data from the Surface Heat Budget for the Arctic Ocean (SHEBA) experiment. Journal of Geophysical Research: Oceans 111(C9), C09001. doi: 10.1029/2005JC002907.
Cassano, JJ, Parish, TR and King, JC (2001) Evaluation of turbulent surface flux parameterizations for the stable surface layer over Halley, Antarctica*. Monthly Weather Review 129(1), 2646. doi: 10.1175/1520-0493(2001)129%3C0026:EOTSFP%3E2.0.CO;2.
Chen, F, Janjić, Z and Mitchell, K (1997) Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Boundary-Layer Meteorology 85(3), 391421. doi: 10.1023/A:1000531001463.
Cheng, Y and Brutsaert, W (2005) Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Boundary-Layer Meteorology 114(3), 519538. doi: 10.1007/s10546-004-1425-4.
Cullen, N, Mölg, T, Kaser, G, Steffen, K and Hardy, D (2007) Energy-balance model validation on the top of Kilimanjaro, Tanzania, using eddy covariance data. Annals of Glaciology 46(1), 227233. doi: 10.3189/172756407782871224.
Else, BGT and 7 others (2014) Surface energy budget of landfast sea ice during the transitions from winter to snowmelt and melt pond onset: the importance of the net longwave radiation and cyclone forcings. Journal of Geophysical Research: Oceans 119, 36793693. doi: 10.1002/2013JC009672.
Foken, T, Leuning, R, Oncley, SR, Mauder, M and Aubinet, M (2012) Corrections and data quality control. In Aubinet, M, Vesala, T and Papale, D (eds), Eddy Covariance: A Practical Guide to Measurement and Data Analysis. New York: Springer, pp. 85131.
Garratt, JR (1992) The Atmospheric Boundary Layer. Cambridge, UK: Cambridge University Press, pp. 316.
Grachev, AA, Andreas, EL, Fairall, CW, Guest, PS and Persson, POG (2007) SHEBA flux–profile relationships in the stable atmospheric boundary layer. Boundary-Layer Meteorology, 124(3), 315333. doi: http://dx.doi.org/10.1007/s10546-007-9177-6.
Grachev, AA, Andreas, EL, Fairall, CW, Guest, PS and Persson, POG (2013) The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Boundary-Layer Meteorology 147(1), 5182. doi: 10.1007/s10546-012-9771-0.
Graham, RM and 8 others (2017) A comparison of the two Arctic atmospheric winter states observed during N-ICE2015 and SHEBA. Journal of Geophysical Research: Atmospheres 122, 57165737. doi: 10.1002/2016JD025475.
Guest, PS and Davidson, KL (1991) The aerodynamic roughness of different types of sea ice. Journal of Geophysical Research: Oceans 96(C3), 47094721. doi: 10.1029/90JC02261.
Guo, X and 7 others (2011) Critical evaluation of scalar roughness length parametrizations over a melting valley glacier. Boundary-Layer Meteorology 139(2), 307332. doi: 10.1007/s10546-010-9586-9.
King, JC (1990) Some measurements of turbulence over an Antarctic ice shelf. Quarterly Journal of the Royal Meteorological Society 116(492), 379400. doi: 10.1002/qj.49711649208.
King, JC and Anderson, PS (1994) Heat and water vapour fluxes and scalar roughness lengths over an Antarctic ice shelf. Boundary-Layer Meteorology 69(1-2), 101121. doi: 10.1007/BF00713297.
King, JC, Anderson, PS, Smith, MC and Mobbs, SD (1996) The surface energy and mass balance at Halley, Antarctica during winter. Journal of Geophysical Research 101(D14), 119128. doi: 10.1029/96JD01714.
King, JC, Connolley, WM and Derbyshire, SH (2001) Sensitivity of modelled Antarctic climate to surface and boundary-layer flux parametrizations. Quarterly Journal of the Royal Meteorological Society 127(573), 779794. doi: 10.1002/qj.49712757304.
King, JC, Varley, MJ and Lachlan-Cope, TA (1998) Using satellite thermal infrared imagery to study boundary-layer structure in an Antarctic katabatic wind region. International Journal of Remote Sensing 19(17), 33353348. doi: 10.1080/014311698214028.
Kljun, N, Calanca, P, Rotach, MW and Schmid, HP (2015) The simple two-dimensional parameterisation for Flux Footprint Predictions (FFP). Geoscientific Model Development 8(8), 67576808. doi: 10.5194/gmd-8-3695-2015.
Large, WG, Mc Williams, JC and Doney, SC (1994) Sensible and latent heat flux measurements over the ocean. Journal of Physical Oceanography 12(5), 464482. doi: 10.1175/1520-0485(1982)012<0464:SALHFM>2.0.CO;2.
Lazzara, MA, Weidner, GA, Keller, LM, Thom, JE and Cassan, JJ (2012) Antarctic automatic weather station program: 30 years of Polar observation. Bulletin of the American Meteorological Society 93(10), 15191537. doi: 10.1175/BAMS-D-11-00015.1.
Lee, X, Massman, W and Law, B (2004) Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis. Dordrecht: Kluwer Academic Publisher, pp. 119160.
Liu, C and 6 others (2019) On the surface fluxes characteristics and roughness lengths at Zhongshan station, Antarctica. International Journal of Digital Earth, 12(8), 878892. doi: 10.1080/17538947.2017.1335804.
Munro, DS (1989) Surface roughness and bulk heat transfer on a glacier: comparison with eddy correlation. Journal of Glaciology 35(121), 343348. doi: 10.1017/S0022143000009266.
Paulson, CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. Journal of Applied Meteorology and Climatology 9(9), 857861. doi: 10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.
Perovich, DK, Grenfell, TC, Light, B and Hobbs, PV (2002) Seasonal evolution of the albedo of multiyear Arctic sea ice. Journal of Geophysical Research 107(C10), 8044. doi: 10.1029/2000JC000438.
Perovich, DK and Polashensk, C (2012) Albedo evolution of seasonal Arctic sea ice. Geophysical Research Letters 39(8), L08501. doi: 10.1029/2012GL051432.
Persson, POG, Fairall, CW, Andreas, EL, Guest, PS and Perovic, DK (2002) Measurements near the Atmospheric Surface Flux Group tower at SHEBA: near-surface conditions and surface energy budget. Journal of Geophysical Research 107(C10), 8045. doi: 10.1029/2000JC000705.
Reijmer, CH, Meijgaard, EV and Van den Broeke, MR (2003) Roughness length for momentum and heat over Antarctica in a regional atmospheric climate model. In Proceedings of the seventh conference on Polar meteorology and oceanography and joint symposium on high-latitude climate variations, Hyannis, Massachusetts. Washington, DC, American Meteorological Society. CD-ROM, May 12–16.
Rigden, A, Li, D and Salvucci, G (2018) Dependence of thermal roughness length on friction velocity across land cover types: a synthesis analysis using AmeriFlux data. Agricultural and Forest Meteorology 249, 512519. doi: 10.1016/j.agrformet.2017.06.003.
Rodrigo, JS and Anderson, PS (2013) Investigation of the stable atmospheric boundary layer at Halley Antarctica. Boundary-Layer Meteorology 148(3), 517539. doi: 10.1007/s10546-013-9831-0.
Schröder, D, Vihma, T, Kerber, A and Brümmer, B (2003) On the parameterization of turbulent surface fluxes over heterogeneous sea ice surfaces. Journal of Geophysical Research, 108(C6). doi: http://dx.doi.org/10.1029/2002JC001385.
Smeets, CJPP and Van den Broeke, MR (2008a) Temporal and spatial variation of momentum roughness length in the ablation zone of the Greenland ice sheet. Boundary-Layer Meteorology 128(3), 315338. doi: 10.1007/s10546-008-9291-0.
Smeets, CJPP and Van den Broeke, MR (2008b) The parameterization of scalar transfer over rough ice. Boundary-Layer Meteorology 128(3), 339355. doi: 10.1007/s10546-008-9292-z.
Stearns, CR and Weidner, GA (1993) Sensible and latent heat flux estimates in Antarctica. Antarctic meteorology and climatology: studies based on automatic weather stations, American Geophysical Union, Washington, 109-138
Sun, J (1999) Diurnal variations of thermal roughness height over a grassland. Boundary-Layer Meteorology 92(3), 407427. doi: 10.1023/A:1002071421362.
Toyota, T, Massom, R, Tateyama, K, Tamura, T and Fraser, A (2011) Properties of snow overlying the sea ice off East Antarctica in late winter, 2007. Deep-Sea Research Part II 58(9-10), 11371148. doi: 10.1016/j.dsr2.2010.12.002.
Van den Broeke, MR, van As, D, Reijmer, C and van de Wal, R (2005) Sensible heat exchange at the Antarctic snow surface: a study with automatic weather stations. International Journal of Climatology 25(8), 10811101. doi: 10.1002/joc.1152.
Vignon, E and 7 others (2017) Momentum- and heat-flux parametrization at Dome C, Antarctica: a sensitivity study. Boundary-Layer Meteorology 162(2), 127. doi: 10.1007/s10546-016-0192-3.
Vihma, T, Johansson, MM and Launiainen, J (2009) Radiative and turbulent surface heat fluxes over sea ice in the western Weddell Sea in early summer. Journal of Geophysical Research: Oceans 114(C4), C04019. doi: 10.1029/2008JC004995.
Walden, VP, Hudson, SR, Cohen, L, Murphy, SY and Granskog, MA (2017) Atmospheric components of the surface energy budget over young sea ice: results from the N-ICE2015 campaign. Journal of Geophysical Research: Atmospheres 122(16), 84278446. doi: 10.1002/2016JD026091.
Wamser, C and Martinson, DG (1993) Drag coefficients for winter Antarctic peak ice. Journal of Geophysical Research: Oceans 98(C7), 1243112437. doi: 10.1029/93JC00655.
Weiss, AI, King, J, Lachlan-Cope, T and Ladkin, R (2011) On the effective aerodynamic and scalar roughness length of Weddell sea ice. Journal of Geophysical Research: Atmospheres 116(D19), D19119. doi: 10.1029/2011JD015949.
Wendler, G, Moore, B, Dissing, D and Kelley, J (2000) On the radiation characteristics of Antarctic Sea Ice. Atmosphere-Ocean 38(2), 349366. doi: 10.1080/07055900.2000.9649652.
Yagüe, C and Cano, JL (1994) The influence of stratification on heat and momentum turbulent transfer in Antarctica. Boundary-Layer Meteorology 69(1-2), 123136. doi: 10.1007/BF00713298.
Yang, K and 8 others (2007) Turbulent flux transfer over bare-soil surfaces: characteristics and parameterization. Journal of Applied Meteorology and Climatology 47(1), 276290. doi: 10.1175/2007JAMC1547.1.
Yang, Q and 11 others (2016) Albedo of coastal landfast sea ice in Prydz Bay, Antarctica: observations and parameterization. Advances in Atmospheric Sciences 33, 535543. doi: 10.1007/s00376-015-5114-7.
Yang, K, Koike, T, Fujii, H, Tamagawa, K and Hirose, N (2002) Improvement of surface flux parametrizations with a turbulence-related length. Quarterly Journal of the Royal Meteorological Society 128(584), 20732087. doi: 10.1256/003590002320603548.
Yu, L and 9 others (2019) The variability of surface radiation fluxes over landfast sea ice near Zhongshan station, East Antarctica during austral spring. International Journal of Digital Earth, 12(8), 860877. doi: 10.1080/17538947.2017.1304458.
Zilitinkevich, SS (1995) Non-Local Turbulent Transport: Pollution Dispersion Aspects of Coherent Structure of Convective Flows. Air Pollution Theory and Simulation, Computational Mechanics Publications, Southampton, Boston, 5360

Keywords

Measurements of turbulence transfer in the near-surface layer over the Antarctic sea-ice surface from April through November in 2016

  • Changwei Liu (a1), Zhiqiu Gao (a2) (a3), Qinghua Yang (a4) (a5), Bo Han (a4), Hong Wang (a2), Guanghua Hao (a6), Jiechen Zhao (a7), Lejiang Yu (a7), Linlin Wang (a3) and Yubin Li (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed