Skip to main content Accessibility help
×
Home

Mass balance of the Sør Rondane glacial system, East Antarctica

  • Denis Callens (a1), Nicolas Thonnard (a1), Jan T.M. Lenaerts (a2), Jan M. Van Wessem (a2), Willem Jan Van de Berg (a2), Kenichi Matsuoka (a3) and Frank Pattyn (a1)...

Abstract

Mass changes of polar ice sheets have an important societal impact, because they affect global sea level. Estimating the current mass budget of ice sheets is equivalent to determining the balance between surface mass gain through precipitation and outflow across the grounding line. For the Antarctic ice sheet, grounding line outflow is governed by oceanic processes and outlet glacier dynamics. In this study, we compute the mass budget of major outlet glaciers in the eastern Dronning Maud Land sector of the Antarctic ice sheet using the input/output method. Input is given by recent surface accumulation estimates (SMB) of the whole drainage basin. The outflow at the grounding line is determined from the radar data of a recent airborne survey and satellite-based velocities using a flow model of combined plug flow and simple shear. This approach is an improvement on previous studies, as the ice thickness is measured, rather than being estimated from hydrostatic equilibrium. In line with the general thickening of the ice sheet over this sector, we estimate the regional mass balance in this area at 3.15 ± 8.23 Gt a−1 according to the most recent SMB model results.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mass balance of the Sør Rondane glacial system, East Antarctica
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mass balance of the Sør Rondane glacial system, East Antarctica
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mass balance of the Sør Rondane glacial system, East Antarctica
      Available formats
      ×

Copyright

Corresponding author

Correspondence: Denis Callens <dcallens@ulb.ac.be>

References

Hide All
Arthern, RJ, Winebrenner, DP and Vaughan, DG (2006) Antarctic snow accumulation mapped using polarization of 4.3 cm wavelength microwave emission. J. Geophys. Res., 111(D6), D06107 (doi: 10.1029/2004JD005667)
Bamber, JL, Gomez-Dans, JL and Griggs, JA (2009) A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data – Part 1: Data and methods. Cryosphere, 3(1), 101111 (doi: 10.5194/tc-3-101-2009)
Bindschadler, R and 17 others (2011) High-resolution image-derived grounding and hydrostatic lines for the Antarctic Ice Sheet. National Snow and Ice Data Center, Boulder, CO. Digital media: http://nsidc.org/data/docs/agdc/nsidc0489_bindschadler
Callens, D, Matsuoka, K, Steinhage, D, Smith, B, Witrant, E and Pattyn, F (2014) Transition of flow regime along a marine-terminating outlet glacier in East Antarctica. Cryosphere, 8(3), 867875 (doi: 10.5194/tc-8-867-2014)
Cuffey, KM and Paterson, WSB (2010) The physics of glaciers, 4th edn. Butterworth-Heinemann, Oxford
Dutrieux, P and 6 others (2013) Pine Island glacier ice shelf melt distributed at kilometre scales. Cryosphere, 7(5), 15431555 (doi: 10.5194/tc-7-1543-2013)
Gunter, B and 8 others (2009) A comparison of coincident GRACE and ICESat data over Antarctica. J. Geod., 83(11), 10511060 (doi: 10.1007/s00190-009-0323-4)
Hanna, E and 11 others (2013) Ice-sheet mass balance and climate change. Nature, 498(7452), 5159 (doi: 10.1038/nature12238)
Kamb, B and Echelmeyer, KA (1986) Stress-gradient coupling in glacier flow: I. Longitudinal averaging of the influence of ice thickness and surface slope. J. Glaciol., 32(111), 267284
Lenaerts, JTM, Van den Broeke, MR, Van de Berg, WJ, Van Meijgaard, E and Kuipers, Munneke P (2012) A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett., 39(4), L04501 (doi: 10.1029/2011GL050713)
Nixdorf, U and 6 others (1999) The newly developed airborne radio-echo sounding system of the AWI as a glaciological tool. Ann. Glaciol., 29, 231238 (doi: 10.3189/172756499781821346)
Pattyn, F, de Brabander, S and Huyghe, A (2005) Basal and thermal control mechanisms of the Ragnhild glaciers, East Antarctica. Ann. Glaciol., 40, 225231 (doi: 10.3189/172756405781813672)
Payne, AJ, Holland, PR, Shepherd, AP, Rutt, IC, Jenkins, A and Joughin, I (2007) Numerical modeling of ocean–ice interactions under Pine Island Bay’s ice shelf. J. Geophys. Res., 112(C10), C10019 (doi: 10.1029/2006JC003733)
Rapp, RH (1997) Use of potential coefficient models for geoid undulation determinations using a spherical harmonic representation of the height anomaly/geoid undulation difference. J. Geod., 71(5), 282289 (doi: 10.1007/s001900050096)
Rignot, E and 6 others (2008) Recent Antarctic ice mass loss from radar interferometry and regional climate modelling. Nature Geosci., 1(2), 106110 (doi: 10.1038/ngeo102)
Rignot, E, Velicogna, I, Van den Broeke, MR, Monaghan, A and Lenaerts, J (2011a) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38(5), L05503 (doi: 10.1029/2011GL046583)
Rignot, E, Mouginot, J and Scheuchl, B (2011b) Ice flow of the Antarctic Ice Sheet. Science, 333(6048), 14271430 (doi: 10.1126/science.1208336)
SCAR (Scientific Committee on Antarctic Research) (2012) SCAR Antarctic Digital Database Version 6.0. Scientific Committee on Antarctic Research, Cambridge. Digital media: http://nsidc.org/data/docs/agdc/nsidc0489
Shepherd, A and 46 others (2012) A reconciled estimate of ice-sheet mass balance. Science, 338(6111), 11831189 (doi: 10.1126/science.1228102)
Steinhage, D, Nixdorf, U, Meyer, U and Miller, H (1999) New maps of the ice thickness and subglacial topography in Dronning Maud Land, Antarctica, determined by means of airborne radio-echo sounding. Ann. Glaciol., 29, 267272 (doi: 10.3189/172756499781821409)
Steinhage, D, Nixdorf, U, Meyer, U and Miller, H (2001) Subglacial topography and internal structure of central, western Dronning Maud Land, Antarctica, determined from airborne radio echo sounding. J. Appl. Geophys., 47(3–4), 183189 (doi: 10.1016/S0926-9851(01)00063-5)
Van Autenboer, T and Decleir, H (1978) Glacier discharge in the SørRondane, a contribution to the mass balance of Dronning Maud Land, Antarctica. Z. Gletscherkd. Glazialgeol., 14(1), 116
Van de Berg, WJ, Van den Broeke, MR, Reijmer, CH and Van Mekjgaard, E (2006) Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. J. Geophys. Res., 111(D11), D11104 (doi: 10.1029/2005JD006495)
Van Wessem, JM and 13 others (2014) Improved representation of East Antarctic surface mass balance in a regional atmospheric climate model. J. Glaciol., 60(222), 761770 (doi: 10.3189/2014JoG14J051)
Zwally, HJ and Giovinetto, MB (2011) Overview and assessment of Antarctic ice-sheet mass balance estimates: 1992–2009. Surv. Geophys., 32(4–5), 351376 (doi: 10.1007/s10712-011-9123-5)

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed