Skip to main content Accessibility help
×
Home

Mass balance of Devon Ice Cap, Canadian Arctic

  • Andrew Shepherd (a1), Zhijun Du (a1), Toby J. Benham (a1), Julian A. Dowdeswell (a1) and Elizabeth M. Morris (a2)...

Abstract

Interferometric synthetic aperture radar data show that Devon Ice Cap (DIC), northern Canada, is drained through a network of 11 glacier systems. More than half of all ice discharge is through broad flows that converge to the southeast of the ice cap, and these are grounded well below sea level at their termini. A calculation of the ice-cap mass budget reveals that the northwestern sector of DIC is gaining mass and that all other sectors are losing mass. We estimate that a 12 489 km2 section of the main ice cap receives 3.46±0.65 Gt of snowfall each year, and loses 3.11±0.21 Gt of water through runoff, and 1.43±0.03 Gt of ice through glacier discharge. Altogether, the net mass balance of DIC is –1.08±0.67 Gt a–1. This loss corresponds to a 0.003 mma–1 contribution to global sea levels, and is about half the magnitude of earlier estimates.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mass balance of Devon Ice Cap, Canadian Arctic
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mass balance of Devon Ice Cap, Canadian Arctic
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mass balance of Devon Ice Cap, Canadian Arctic
      Available formats
      ×

Copyright

References

Hide All
Abdalati, W. and 9 others. 2004. Elevation changes of ice caps in the Canadian Arctic Archipelago. J. Geophys. Res., 109(F4), F04007. (10.1029/2003JF000045.)
Braithwaite, R.J. 1995. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling. J. Glaciol., 41(137), 153160.
Braun, C., Hardy, D.R. and Bradley, R.S.. 2004. Mass balance and area changes of four High Arctic plateau ice caps, 1959–2002. Geogr. Ann., 86A(1), 4352.
Burgess, D.O. and Sharp, M.J.. 2004. Recent changes in areal extent of the Devon Ice Cap, Nunavut, Canada. Arct. Antarct. Alp. Res., 36(2), 261271.
Burgess, D.O., Sharp, M.J., Mair, D.W.F., Dowdeswell, J.A. and Benham, T.J.. 2005. Flow dynamics and iceberg calving rates of Devon Ice Cap, Nuvavut, Canada. J. Glaciol., 51(173), 219230.
Church, J.A. and Gregory, J.M.. 2001. Changes in sea level. In Houghton, J.T. and 7 others, eds. Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, etc., Cambridge University Press, 639693.
Cress, P. and Wyness, R.. 1961. The Devon Island expedition, observations of glacial movements. Arctic, 14(4), 257259.
Dowdeswell, J.A. and 10 others. 1997. The mass balance of circum-Arctic glaciers and recent climate change. Quat. Res., 48(1), 114.
Dowdeswell, J.A., Benham, T.J., Gorman, M.R., Burgess, D. and Sharp, M.. 2004. Form and flow of the Devon Island ice cap, Canadian Arctic. J. Geophys. Res., 109(F2), F02002. (10.1029/2003JF000095.)
Fisher, D.A. and 12 others. 1998. Penny Ice Cap cores, Baffin Island, Canada, and the Wisconsinan Foxe Dome connection: two states of Hudson Bay ice cover. Science, 279(5351), 692695.
Goldstein, R.M., Engelhardt, H., Kamb, B. and Frolich, R.M.. 1993. Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science, 262(5139), 15251530.
Haeberli, W., Hoelzle, M., Suter, S. and Frauenfelder, R., comps. 1998. Fluctuations of glaciers 1990–1995 (Vol. VII). Wallingford, Oxon., IAHS Press; Nairobi, UNEP; Paris, UNESCO.
Joughin, I., Kwok, R. and Fahnestock, M.. 1996. Estimation of ice-sheet motion using satellite radar interferometry: method and error analysis with application to Humboldt Glacier, Greenland. J. Glaciol., 42(142), 564575.
Koerner, R.M. 1966. Accumulation on the Devon Island ice cap, Northwest Territories, Canada. J. Glaciol., 6(45), 383392.
Koerner, R.M. 1970. The mass balance of the Devon Island ice cap, Northwest Territories, Canada, 1961–66. J. Glaciol., 9(57), 325336.
Koerner, R.M. 2005. Mass balance of glaciers in the Queen Elizabeth Islands, Nunavut, Canada. Ann. Glaciol., 42, 417423.
Kwok, R. and Fahnestock, M.A.. 1996. Ice sheet motion and topography from radar interferometry. IEEE Trans. Geosci. Remote Sens., 34(1), 189200.
Mair, D., Burgess, D. and Sharp, M.. 2005. Thirty-seven year mass balance of Devon Ice Cap, Nunavut, Canada, determined by shallow ice coring and melt modelling. J. Geophys. Res., 110(F1), F01011. (10.1029/2003JF000099.)
Paterson, W.S.B. and 7 others. 1977. An oxygen-isotope climatic record from the Devon Island ice cap, Arctic Canada. Nature, 266(5602), 508511.
Reeh, N. 1991. Parameterization of melt rate and surface temperature on the Greenland ice sheet. Polarforschung, 59(3), 113128.
Rignot, E.J., Gogineni, S.P., Krabill, W.B. and Ekholm, S.. 1997. North and north-east Greenland ice discharge from satellite radar interferometry. Science, 276(5314), 934937.
Rigor, I.G., Colony, R.L. and Martin, S.. 2000. Variations in surface air temperature observations in the Arctic, 1979–97. J. Climate, 13(5), 896914.
Rott, H., Stuefer, M., Siegel, A., Skvarca, P. and Eckstaller, A.. 1998. Mass fluxes and dynamics of Moreno Glacier, Southern Patagonia Icefield. Geophys. Res. Lett., 25(9), 14071410.
Shepherd, A., Wingham, D.J., Mansley, J.A.D. and Corr, H.F.J.. 2001. Inland thinning of Pine Island Glacier, West Antarctica. Science, 291(5505), 862864.
Zebker, H.A., Werner, C.L., Rosen, P.A. and Hensley, S.. 1994. Accuracy of topographic maps derived from ERS-1 interferometric radar. IEEE Trans. Geosci. Remote Sens., 32(4), 823836.
Zwally, H.J., Abdalati, W., Herring, T., Larson, K., Saba, J. and Steffen, K.. 2002. Surface melt-induced acceleration of Greenland ice-sheet flow. Science, 297(5579), 218222.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed