Skip to main content Accessibility help
×
Home

Kamb Ice Stream flow history and surge potential

  • Hermann Engelhardt (a1) and Barclay Kamb (a1)

Abstract

A basal zone, tens of meters thick, of debris-laden ice was observed in Kamb Ice Stream, West Antarctica, using a video camera lowered into boreholes made by hot-water drilling. The debris content varies, sometimes abruptly, forming a sequence of layers that reflect the complex history of fast ice flow and bed interaction. In most parts, the concentration of debris is low, a few percent by weight, with particles, often mud clots, dispersed in a matrix of clear ice. The nature of the debris distribution can be interpreted in terms of specific time intervals in the history of fast motion of Kamb Ice Stream including processes leading up to the termination of its streaming behavior and possible reactivation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Kamb Ice Stream flow history and surge potential
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Kamb Ice Stream flow history and surge potential
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Kamb Ice Stream flow history and surge potential
      Available formats
      ×

Copyright

References

Hide All
Alley, RB and Bindschadler, RA (2001) The West Antarctic ice sheet and sea-level change. In Alley, RB and Bindschadler, RA eds. The West Antarctic ice sheet: behavior and environment (Antarctic Research Series 77) American Geophysical Union, Washington, DC, 111
Alley, RB, Anandakrishnan, S, Bentley, CR and Lord, N (1994) A water-piracy hypothesis for the stagnation of Ice Stream C, Antarctica. Ann. Glaciol., 20, 187194
Alley, RB, Cuffey, KM, Evenson, EB, Strasser, JC, Lawson, DE and Larson, GJ (1997) How glaciers entrain and transport basal sediment: physical constraints. Quat. Sci. Rev., 16(9), 10171038 (doi: 10.1016/S0277-3791(97)00034-6)
Alley, RB, Lawson, DE, Evenson, EB, Strasser, JC and Larson, GJ (1998) Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: I I . Theory. J. Glaciol., 44(148), 563569
Bamber, JL, Riva, REM, Vermeersen, BLA and LeBrocq, AM (2009) Reassessment of the potential sea-level rise from a collapse of the West Antarctic Ice Sheet. Science, 324(5929), 901903 (doi: 10.1126/science.1169335)
Behar, A, Carsey, F, Lane, A and Engelhardt, H (2001) The Antarctic ice borehole probe. In Proceedings of the IEEE Aerospace Conference, 10–17 March 2001, Big Sky, Montana, USA. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 325330
Bentley, CR and 12 others (2009) Ice drilling and coring. In Bar-Cohen, Y and Zacny, K eds. Drilling in extreme environments: penetration and sampling on Earth and other planets. Wiley– VCH, Weinheim (doi: 10.1002/9783527626625)
Blankenship, DD, Bell, RE, Hodge, SM, Brozena, JM, Behrendt, JC and Finn, CA (1993) Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability. Nature, 361(6412), 526529 (doi: 10.1038/361526a0)
Bougamont, M, Tulaczyk, S and Joughin, I (2003) Response of subglacial sediments to basal freeze-on: 2. Application in numerical modeling of the recent stoppage of Ice Stream C, West Antarctica. J. Geophys. Res., 108(B4), 2223 (doi: 10.1019/ 2002JB001936)
Boulton, GS and Hindmarsh, RCA (1987) Sediment deformation beneath glaciers: rheology and geological consequences. J. Geophys. Res., 92(B9), 90599082 (doi: 10.1029/ JB092iB09p09059)
Carsey, F, Behar, A, Lane, AL, Realmuto, V and Engelhardt, H (2002) A borehole camera system for imaging the deep interior of ice sheets. J. Glaciol., 48(163), 622628 (doi: 10.3189/ 172756502781831124)
Catania, GA, Conway, HB, Gades, AM, Raymond, CF and Engelhardt, H (2003) Bed reflectivity beneath inactive ice streams in West Antarctica. Ann. Glaciol., 36, 287291 (doi: 10.3189/ 172756403781816310)
Catania, GA, Conway, H, Raymond, CF and Scambos, TA (2005) Surface morphology and internal layer stratigraphy in the downstream end of Kamb Ice Stream, West Antarctica. J. Glaciol., 51(174), 423431 (doi: 10.3189/172756505781829142)
Christoffersen, P, Tulaczyk, S, Carsey, FD and Behar, AE (2006) A quantitative framework for interpretation of basal ice facies formed by ice accretion over subglacial sediment. J. Geophys. Res., 111(F1), F01017 (doi: 10.1029/2005JF000363)
Christoffersen, P and Tulaczyk, S (2003) Response of subglacial sediments to basal freeze-on: I. Theory and comparison to observations from beneath the West Antarctic ice sheet. J. Geophys. Res., 108(B4), 2222 (doi: 10.1029/2002JB001935)
Christoffersen, P, Tulaczyk, S and Behar, A (2010) Basal ice sequences in Antarctic ice stream: exposure of past hydrologic conditions and a principal mode of sediment transfer. J. Geophys. Res., 115(F3), F03034 (doi: 10.1029/2009JF001430)
Conway, H, Catania, G, Raymond, C, Scambos, T, Engelhardt, H and Gades, A (2002) Switch of flow direction in an Antarctic ice stream. Nature, 419(6906), 465467 (doi: 10.1038/na-ture01081)
Engelhardt, H (1978) Water in glaciers: observations and theory of the behaviour of water levels in boreholes. Z. Gletscherkd. Glazialgeol., 14(1), 3560
Engelhardt, H (2004a) Thermal regime and dynamics of the West Antarctic ice sheet. Ann. Glaciol., 39, 8592 (doi: 10.3189/ 172756404781814203)
Engelhardt, H (2004b) Ice temperature and high geothermal flux at Siple Dome, West Antarctica, from borehole measurements. J. Glaciol., 50(169), 251256 (doi: 10.3189/ 172756504781830105)
Engelhardt, H and Determann, J (1987) Borehole evidence for a thick layer of basal ice in the central Ronne Ice Shelf. Nature, 327(6120), 318319 (doi: 10.1038/327318a0)
Engelhardt, H and Kamb, B (1997) Basal hydraulic system of a West Antarctic ice stream: constraints from borehole observations. J. Glaciol., 43(144), 207230
Engelhardt, H and Kamb, B (1998) Basal sliding of Ice Stream B, West Antarctica. J. Glaciol., 44(147), 223230
Engelhardt, H, Kamb, B and Bolsey, R (2000) A hot-water ice-coring d r i l l . J. Glaciol., 46(153), 341345 (doi: 10.3189/ 172756500781832873)
Fahnestock, MA, Scambos, TA, Bindschadler, RA and Kvaran, G (2000) A millennium of variable ice flow recorded by the Ross Ice Shelf, Antarctica. J. Glaciol., 46(155), 652664 (doi: 10.3189/172756500781832693)
Fricker, HA and Scambos, T (2009) Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003–2008. J. Glaciol., 55(190), 303315 (doi: 10.3189/002214309788608813)
Fricker, HA, Scambos, T, Bindschadler, R and Padman, L (2007) An active subglacial water system in West Antarctica mapped from space. Science, 315(5818), 15441548 (doi: 10.1126/ science.1136897)
Gow, AJ and Williamson, T (1975) Gas inclusions in the Antarctic ice sheet and their glaciological significance. CRREL Res. Rep. 339
Gow, AJ, Epstein, S and Sheehy, W (1979) On the origin of stratified debris in ice cores from the bottom of the Antarctic ice sheet. J. Glaciol., 23(89), 185192
Gow, AJ and 6 others (1997) Physical and structural properties of the Greenland Ice Sheet Project 2 ice cores: a review. J. Geophys. Res., 102(C12), 2655926 575
Harrison, WD, Echelmeyer, KA and Larsen, CF (1998) Measurement of temperature in a margin of Ice Stream B, Antarctica: implications for margin migration and lateral drag. J. Glaciol., 44(148), 615624
Iken, A (1981) The effect of the subglacial water pressure on the sliding velocity of a glacier in an idealized numerical model. J. Glaciol., 27(97), 407421
Jacobel, RW, Welch, BC, Osterhouse, D, Pettersson, R and MacGregor, JA (2009) Spatial variation of radar-derived basal conditions on Kamb Ice Stream, West Antarctica. Ann. Glaciol., 50(51), 1016 (doi: 10.3189/172756409789097504)
Jezek, KC (1999) Glaciological properties of the Antarctic ice sheet from RADARSAT-1 synthetic aperture radar imagery. Ann. Glaciol., 29, 286290 (doi: 10.3189/172756499781820969)
Joughin, I and Tulaczyk, S (2002) Positive mass balance of the Ross ice streams, West Antarctica. Science, 295(5554), 476480 (doi: 10.1126/science.1066875)
Kamb, B (1987) Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res., 92(B9), 90839100 (doi: 10.1029/JB092iB09p09083)
Kamb, B (1990) Is the Antarctic ice sheet disintegrating? Eng. Sci., 53(3), 413
Kamb, B (2001) Basal zone of the West Antarctic ice streams and its role in lubrication of their rapid motion. In Alley, RB and Bindschadler, RA eds. The West Antarctic ice sheet: behavior and environment (Antarctic Research Series 77) American Geophysical Union, Washington, DC, 157199
Kamb, B and 7 others (1985) Glacier surge mechanism: 1982–1983 surge of Variegated Glacier, Alaska. Science, 227(4686), 469479
Knight, PG (1997) The basal ice layer of glaciers and ice sheets. Quat. Sci. Rev., 16(9), 975993 (doi: 10.1016/S0277-3791(97)00033-4)
Kuhs, WF, Klapproth, A and Chazallon, B (2000) Chemical physics of air clathrate hydrates. In Hondoh, T ed. Physics of ice core records. Hokkaido University Press, Sapporo, 373392
Laird, CM and 6 others (2010) Deep ice stratigraphy and basal conditions in central West Antarctica revealed by coherent radar. IEEE Geosci. Remote Sens. Lett., 7(2), 246250 (doi: 10.1109/LGRS.2009.2032304)
Lanoil, B and 7 others (2009) Bacteria beneath the West Antarctic Ice Sheet. Environ. Microbiol., 11(3), 609615 (doi: 10.1111/ j.1462–2920.2008.01831.x)
Lawson, DE, Strasser, JC, Evenson, EB, Alley, RB, Larson, GJ and Arcone, SA (1998) Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice. I. Field evidence. J. Glaciol. , 44(148), 547562
O’Neill, K and Miller, RD (1982) Numerical solutions for a rigid-ice model of secondary frost heave. CRREL Rep. 82-13
O’Neill, K and Miller, RD (1985) Exploration of a rigid ice model of frost heave. Water Resour. Res., 21(3), 281296 (doi: 10.1029/ WR021i003p00281)
Price, SF, Bindschadler, RA, Hulbe, CL and Joughin, IR (2001) Post-stagnation behavior in the upstream regions of Ice Stream C, West Antarctica. J. Glaciol., 47(157), 283294 (doi: 10.3189/ 172756501781832232)
Rempel, AW, Wettlaufer, JS and Worster, MG (2004) Premelting dynamics in a continuum model of frost heave. J. Fluid Mech., 498, 227244 (doi: 10.1017/S0022112003006761)
Rempel, AW, Wettlaufer, JS and Worster, MG (2007) Comment on ‘A quantitative framework for interpretation of basal ice facies formed by ice accretion over subglacial sediment’ by Christoffersen, Poul and others J. Geophys. Res., 112(F2), F02036 (doi: 10.1029/2006JF000701)
Retzlaff, R and Bentley, CR (1993) Timing of stagnation of Ice Stream C, West Antarctica, from short-pulse radar studies of buried surface crevasses. J. Glaciol., 39(133), 553561
Rignot, E, Mouginot, J and Scheuchl, B (2011) Ice flow of the Antarctic Ice Sheet. Science, 333(6048), 14271430 (doi: 10.1126/science.1208336)
Robin Gde, Q, Swithinbank, CWM and Smith, BME (1970) Radio echo exploration of the Antarctic ice sheet. IASH Publ. 86 (Symposium at Hanover 1968 – Antarctic Glaciological Exploration (ISAGE)), 97115
Rothlisberger, H (1972) Water pressure in intra- and subglacial channels. J. Glaciol., 11(62), 177203
Scherer, RP, Aldahan, A, Tulaczyk, S, Possnert, G, Engelhardt, H and Kamb, B (1998) Pleistocene collapse of the West Antarctic ice sheet. Science, 281(5373), 8285
Shabtaie, S and Bentley, CR (1987) West Antarctic ice streams draining into the Ross Ice Shelf: configuration and mass balance. J. Geophys. Res., 92(B2), 13111336 (doi: 10.1029/ JB092iB02p01311)
Smith, BE, Lord, NE and Bentley, CR (2002) Crevasse ages on the northern margin of Ice Stream C, West Antarctica. Ann. Glaciol., 34, 209216 (doi: 10.3189/172756402781817932)
Souchez, R and 8 others (1994) Stable isotopes in the basal silty ice preserved in the Greenland ice sheet at Summit: environmental implications. Geophys. Res. Lett., 21(8), 693696 (doi: 10.1029/ 94GL00641)
Thomas, R and 17 others (2004) Accelerated sea-level rise from West Antarctica. Science, 306(5694), 255258 (doi: 10.1126/ science.1099650)
Tulaczyk, SM, Kamb, B and Engelhardt, HF (2000a) Basal mechanics of Ice Stream B, West Antarctica. I. Till mechanics. J. Geophys. Res., 105(B1), 463481 (doi: 10.1029/1999JB900329)
Tulaczyk, SM, Kamb, B and Engelhardt, HF (2000b) Basal mechanics of Ice Stream B, West Antarctica. II. Undrained-plastic-bed model. J. Geophys. Res., 105(B1), 483494 (doi: 10.1029/ 1999JB900328)
Vogel, SW and 7 others (2005) Subglacial conditions during and after stoppage of an Antarctic Ice Stream: is reactivation imminent? Geophys. Res. Lett., 32(14), L14502 (doi: 10.1029/ 2005GL022563)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed