Skip to main content Accessibility help
×
×
Home

The influence of ice melange on fjord seiches

  • Douglas R. MacAyeal (a1), Julian Freed-Brown (a2), Wendy W. Zhang (a2) and Jason M. Amundson (a1)

Abstract

We compute the eigenmodes (seiches) of the barotropic and baroclinic hydrodynamic equations for an idealized fjord having length and depth scales similar to those of Ilulissat Icefjord, Greenland, into which Jakobshavn Isbræ (also known as Sermeq Kujalleq) discharges. The purpose of the computation is to determine the fjord’s seiche behavior when forced by iceberg calving, capsize and melange movement. Poorly constrained bathymetry and stratification details are an acknowledged obstacle. We are, nevertheless, able to make general statements about the spectra of external and internal seiches using numerical simulations of ideal one-dimensional channel geometry. Of particular significance in our computation is the role of weakly coupled ice melange, which we idealize as a simple array of 20 icebergs of uniform dimensions equally spaced within the fjord. We find that the presence of these icebergs acts to (1) slow down the propagation of both external and internal seiches and (2) introduce band gaps where energy propagation (group velocity) vanishes. If energy is introduced into the fjord within the period range covered by a band gap, it will remain trapped as an evanescent oscillatory mode near its source, thus contributing to localized energy dissipation and ice/melange fragmentation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The influence of ice melange on fjord seiches
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The influence of ice melange on fjord seiches
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The influence of ice melange on fjord seiches
      Available formats
      ×

Copyright

References

Hide All
Ahn, Y and Box, JE (2010) Glacier velocities from time-lapse photos: technique development and first results from the Extreme Ice Survey (EIS) in Greenland. J. Glaciol., 56(198), 723–734
Amundson, JM, Truffer, M, Lüthi, MP, Fahnestock, M, West, M and Motyka, RJ (2008) Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland. Geophys. Res. Lett., 35(22) L22501 (doi: 10.1029/2008GL035281)
Amundson, JM, Fahnestock, M, Truffer, M, Brown, J, Lüthi, MP and Motyka, RJ (2010) Ice melange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res., 115(F1), F01005 (doi: 10.1029/2009JF001405)
Amundson, JM, Lüthi, MP, Fahnestock, M, Truffer, M and Motyka, RJ (2012) Observing glaciogenic ocean waves with regional broadband seismometers, Jakobshavn Isbræ, Greenland Ann. Glaciol., 53(60) (see paper in this issue)
Arneborg, L and Liljebladh, B (2001) The internal seiches in Gullmar Fjord. Part I: dynamics. J. Phys. Oceanogr., 31(9), 2549–2566
Burton, JC and 9 others (2011) Laboratory investigations of iceberg-capsize dynamics, energy dissipation and tsunamigenesis. J. Geophys. Res., 116 (doi: 10.1029/2011JF002055)
Chou, T (1998) Band structure of surface flexural–gravity waves along periodic interfaces. J. Fluid Mech., 369, 333–350
Csanady, GT (1973) Transverse internal seiches in large oblong lakes and marginal seas. J. Phys. Oceanogr., 3(4), 439–447
Gotis, TT (1999) Normal modes of the world ocean with an application to tidal synthesis (MSc thesis, University of Chicago)
Holland, DM, Thomas, RH, de Young, B, Ribergaard, MH and Lyberth, B (2008) Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nature Geosci., 1(10), 659–664
MacAyeal, DR, Abbot, DS and Sergienko, OV (2011) Iceberg-capsize tsunamigenesis. Ann. Glaciol., 52(58), 51–56
Miles, J and Munk, W (1961) Harbor paradox. J. Waterways Harbors Div. (ASCE), 87(3), 111–132
Mortimer, CH and Fee, EJ (1976) Free surface oscillations and tides of Lakes Michigan and Superior. Philos. Trans. R. Soc. London, Ser. A, 281(1299), 1–61
Nettles, M and 12 others (2008) Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland. Geophys. Res. Lett., 35(24), L24503 (doi:10.1029/2008GL036127)
Platzman, GW (1978) Normal modes of the world ocean. Part 1. Design of a finite-element barotropic model. J. Phys. Oceanogr., 8(3), 323–343
Platzman, GW (1984) Normal modes of the world ocean. Part IV: Synthesis of diurnal and semidiurnal tides. J. Phys. Oceanogr., 14(10), 1532–1550
Rabinovich, AB (2009) Seiches and harbor oscillations. In Kim, YC ed. Handbook of coastal and ocean engineering. World Scientific, Singapore, 193–236
Schwab, DJ (1977) Internal free oscillations in Lake Ontario. Limnol. Oceanogr., 22(4), 700–708
Schwab, DJ and Rao, DB (1977) Gravitational oscillations of Lake Huron, Saginaw Bay, Georgian Bay, and the North Channel. J. Geophys. Res., 82(15), 2105–2116
Schwerdtfeger, P (1980) Iceberg oscillations and ocean waves. Ann. Glaciol., 1, 63–66
Straneo, F and 6 others (2011) Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nature Geosci., 4(5), 322–327
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed