Skip to main content Accessibility help
×
Home

Implications for the interpretation of ice-core isotope data from analysis of modelled Antarctic precipitation

  • D. Noone (a1) and I. Simmonds (a1)

Abstract

By consideration of model-generated atmospheric data, dominant anomalies in the synoptic circulation patterns are observed under conditions of high Antarctic precipitation. This is associated with strong moisture advection of marine origin. Examining precipitation at individual locations reveals a strong relationship between local surface temperature and precipitation amount. Days with > 5 mm of precipitation (which, on average, corresponds to about 8% of days over Antarctica) have surface temperatures that are around 10°C warmer than the mean. This bias suggest that abnormal conditions are captured in the ice-core record and that interpretation or reconstruction of palaeotemperatures will succeed only under the possibly flawed assumption that similar abnormal conditions existed at the time of deposition. Although isotopic analysis of Antarctic ice cores has been used successfully in palaeoclimate studies, a complete understanding of the underlying processes affecting the deposition of the core remains to be found. It is reasoned that by obtaining such an understanding, it may be possible to reconstruct the synoptic conditions under which accumulation occurred.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Implications for the interpretation of ice-core isotope data from analysis of modelled Antarctic precipitation
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Implications for the interpretation of ice-core isotope data from analysis of modelled Antarctic precipitation
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Implications for the interpretation of ice-core isotope data from analysis of modelled Antarctic precipitation
      Available formats
      ×

Copyright

References

Hide All
Argete, A. and Simmonds, I.. 1996. Comparison of temporal Cloud variability simulated by a GCM with observations from the Nimbus-7 satellite. Atmósfera, 9(1), 1–21.
Aristarain, A. J., Jouzel, J. and Pourchet, M.. 1986. Past Antarctic Peninsula climate (1850-1980) deduced from an ice core isotope record. Climatic Change. 8(1), 6989.
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus, 16(4), 436468.
Deardorff, J. W. 1977. A parameterization of ground-Surface moisture content for use in atmospheric prediction models. J. Appl. Meteorol., 16(11), 1182–1185.
Fels, S. B. and Schwarzkopf, M. D.. 1975. The simplified exchange approximation: a new method for radiative transfer calculations. J. Atmos. Sci., 32(7), 14751488.
Johnsen, S. J., Dahl-Jensen, D., Dansgaard, W. and Gundestrup, N. S.. 1995. Greenland paleotemperatures derived from GRIP borehole temperature and ice core isotope profiles. Tellus, 47B(5) 624629.
Jones, P. D., Marsh, R., Wigley, T. M. L. and Peel, D. A.. 1993. Decadal time-scale links between Antarctic Peninsula ice-core oxygen-18, deuterium and temperature. Holocene, 3(1), 14–26.
Jouzel, J. and 14 others. 1996. Climatic interpretation of the recently extended Vostok ice core records. Climate Dyn., 12(8), 513–521.
Kato, K. 1978. Factors controlling oxygen isotopic composition of fallen snow in Antarctica. Nature, 272(5648), 46–48.
Manabe, S., Smagorinsky, J. and Strickler, R. F.. 1965. Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Weather Rev., 93(12). 769798.
Noone, D. and Stern, H.. 1995. Verificalion of rainfall forecasts from the Australian Bureau of Meteorology's Global Assimilation and Prognosis (GASP) system. Aust. Meteorol. Mag., 44(4), 275–286.
Reynolds, R. W. 1988. A real-time global sea surface temperature analysis. J. Climate, 1(1), 7586.
Schwarzkopf, M. D. and Fels, S. B.. 1991. The simplified exchange method revisited: an accurate, rapid method for computation of infrared cooling rates and fluxes. J. Geophys. Res., 96(D5), 90759096.
Simmonds, I. 1985. Analysis of the “spinup” of a general circulation model. J. Geophys. Res., 90(D3), 56375660.
Simmonds, I. 1990. Improvements in general circulation model performance in simulating Antarctic climate. Autarct. Sci., 2(4), 287–300. (Correction: Antarct. Sci., 3(2), 1991, 230. )
Simmonds, I. and Budd, W. F.. 1990. A simple parameterization of ice leads in a general circulation model, and the sensitivity of climate to change in Antarctic ice concentration. Ann. Glaciol., 14, 266–269.
Simmonds, I. and Law, R.. 1995. Associations between Antarctic katabatic flow and the upper level winter vortex. Int. J. Climatol., 15(4), 403–421.
Simmonds, I., Trigg, G. and Law, R.. 1988. The climatology of the Melbourne University general circulation model. Melbourne, University of Melbourne. Department of Meteorology. (Publication 31.)
Smith, S. M., Menard, H. W. and Sharman, G. F.. 1966. World-wide ocean depths and continental elevations averaged for areas approximating one degree squares of latitude and longitude. La Jolla, CA, Scripps Institute of Oceanography. (SIO Reference Report 65-8.)
Taylor, R. B., Barnes, D. J. and Lough, A. M.. 1995. On the inclusion of trace materials into massive coral skeletons. 1. Materials occurring in the environment in short pulses. J. Exp. Mar. Biol. Ecol., 185, 255–278.

Implications for the interpretation of ice-core isotope data from analysis of modelled Antarctic precipitation

  • D. Noone (a1) and I. Simmonds (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed