Skip to main content Accessibility help
×
Home

Impact of spatial resolution on the hydrological simulation of the Durance high-Alpine catchment, France

  • Pierre Etchevers (a1), Yves Durand (a1), Florence Habets (a2), Eric Martin (a1) and Joël Noilhan (a2)...

Abstract

The water balance of the mountainous Durance river catchment, French Alps, is simulated from 1981 to 1994 with a soil-vegetation-atmosphere transfer (SVAT) model. Particular attention is paid to the snow-cover evolution using a detailed model of the snowpack evolution. The results are validated by comparison of the simulated discharges calculated by the SVAT with daily observations at three gauging stations located in the watershed. Three different spatial resolutions are used (1, 8 and 46 km) in order to evaluate the impact on the surface-water-budget results. Comparison with the finest resolution indicates the need for sub-grid-scale parameterization for the model with larger resolution.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Impact of spatial resolution on the hydrological simulation of the Durance high-Alpine catchment, France
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Impact of spatial resolution on the hydrological simulation of the Durance high-Alpine catchment, France
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Impact of spatial resolution on the hydrological simulation of the Durance high-Alpine catchment, France
      Available formats
      ×

Copyright

References

Hide All
Beljaars, A. C. M., Viterbo, P., Miller, M.J. and Belts, A. K.. 1996. The anomalous rainfall over the USA during July 1993: sensitivity to land surface parameterization and soil moisture anomalies. Mon. Weather Rev., 124(3), 362383.
Boone, A., Calvet, J. C. and Noilhan, J.. 1999. Inclusion of a third soil layer in a land-surface scheme using the force-restore method. J. Atmos. Set., 38(11), 16111630
Braun, L. N. 1991. Modelling of the snow-water equivalent in the mountain environment. International Association of Hydrological Sciences Publication 205 (Symposium at Vienna 1991-Snow, Hydrology and Forests in High Alpine Areas), 317.
Braun, L. N., Brun, E., Durand, Y., Martin, E. and Tourasse, P.. 1994. Simulation of discharge using different methods of meteorological data distribution, basin discretization and snow modelling. Nord. Hydrol, 25(1–2), 129144.
Brun, E., Martin, E., Simon, V., Gendre, C. and Coléou, C.. 1989. An energy and mass model of snow cover suitable for operational avalanche forecasting. J. Glaciol, 35(121), 333342.
Brun, E., David, P., Sudul, M. and Brunot, G.. 1992. A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. J. Glacial., 38(128), 1322.
Brun, E., Martin, E. and Spiridonov, V.. 1997. Coupling a multi-layered snow model with a GCM. Ann. Glacial., 25,6672.
Champeaux, J. L. and Legleau, H.. 1995. Vegetation mapping over Europe using NOAA/AVHRR. In The 1995 Meteorological Satellite Data Users Conference, Winchester, U.K. Proceedings. Winchester, EUMETSA, 139143.
Durand, Y, Brun, E., Merindol, L., Guyomarc’h, G., Lesaffre, B. and Martin, E.. 1993. A meteorological estimation of relevant parameters for snow models. Ann. Glaciol., 18,6571
Durot, K. 1999. Moderation hydrologique distribute du bassin versant nivo-pluvial de Sarennes. Validation de donnees d’entrée et développement d’un module de fonte nivale sous foret. (Ph.D. thesis, Institut National Polytechnique de Grenoble.)
Etchevers, P. 2000. Moderation de la phase du cycle continentale de Peau à l’échelle régionale: impact de la moderation de l’enneigement sur l’hydrologie du bassin versant du Rhone. (Ph.D. thesis, Université Paul Sabatier, Toulouse.)
Etchevers, P., Douville, H. and Martin, E.. 1999. Simulation of the Northern Hemisphere snow cover. International Association of Hydrological Sciences Publication 256 (Symposium at Birmingham 1999 –– Interactions between the Cryosphere, Climate and Greenhouse Gases), 310.
Giard, D and Bazile, E.. 2000. Implementation of a new assimilation scheme for soil and surface variables in a global NWP model. Man. Weather Rev., 128(4), 9971015.
Giordano, A. 1990. CORINE soil erosion risk and important land resources. Luxembourg, Office of Official Publications of the European Communities. (Technical Report EUR 12233 EN.)
Habets, F. and 9 others. 1999a. Implementation of the ISBA surface scheme in a distributed hydrological model, applied to the Hapex-Mobilhy area (I and II). J. Hydrol., 217(1–2), 75118.
Habets, F. and 7 others. 1999b. Simulation of the water budget and the river flows of the Rhone basin. J. Geophys. Res., 104(D24), 31,14531,172.
Henderson-Sellers, A., Yang, A.-L. and Dickinson, R. E.. 1993. The project for intercomparison of land-surface parameterization schemes. Bull. Am. Meteorol.Soc., 74(7), 13351349.
King, D., Lebas, C., Jamagne, M., Hardy, R. and Draoussin, J.. 1995. Base de donnees geographies des sols de France a l’échelle 1/1,000,000. Avignon, Institut National de Recherches Agronomiques (INRA). (Technical Report.)
Martin, E., Brun, E. and Durand, Y.. 1994. Sensitivity of the French Alps snow cover to the variation of climatic variables. Annales Geophysicae, Atmospheres, Hydrospheres and Space Sciences, 12(5), 469477
Miyakoda, K., Sirutis, J. and Strickler, R.F. 1979. Cumulated results of extended forecast experiment. Part II: Model performance for summer cases. Mon. Weather Rev., 107(4), 395420.
Noilhan, J. and Lacarrere, P.. 1995. GCM gridscale evaporation from mesoscale modelling. J. Climate, 8(2), 206223.
Noilhan, J. and Mahfouf, J.-F.. 1996. The ISBA land-surface parameterization scheme. Global and Planetary Change, 13,145159.
Noilhan, J. and Planton, S.. 1989. A simple parameterization of land surface processes for meteorological models. Man. Weather Rev., 117(3), 536549.
Ritter, B. and Geleyn, J.-F.. 1992. A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Weather Rev., 120(2), 303325.
Schlosser, C. A. and 33others. 2000. Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS 2(d). Mon. Weather Rev., 128(2), 301321.
Yang, R., Fennessy, M. J. and Shukla, J.. 1994. The influence of initial soil wetness on medium-range surface weather forecasts. Mon. Weather Rev., 122(3), 471485.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed