Skip to main content Accessibility help
×
Home

Impact of hydrodynamics on seismic signals generated by iceberg collisions

  • Jason M. Amundson (a1), Justin C. Burton (a2) and Sergio Correa-Legisos (a3)

Abstract

Full-glacier-thickness icebergs are frequently observed to capsize as they calve into the ocean. As they capsize they may collide with the glaciers’ termini; previous studies have hypothesized that such collisions are the source of teleseismic ‘glacial earthquakes’. We use laboratory-scale experiments, force-balance modeling and theoretical arguments to show that (1) the contact forces during these collisions are strongly influenced by hydrodynamic forces and (2) the associated glacial earthquake magnitudes (expressed as twice-integrated force histories) are related to the energy released by the capsizing icebergs plus a hydrodynamic term that is composed of drag forces and hydrodynamic pressure. Our experiments and first-order modeling efforts suggest that, due to hydrodynamic forces, both contact force and glacial earthquake magnitudes may not be directly proportional to the energy released by the capsizing icebergs (as might be expected). Most importantly, however, our results highlight the need to better understand the hydrodynamics of iceberg capsize prior to being able to accurately interpret seismic signals generated by iceberg collisions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Impact of hydrodynamics on seismic signals generated by iceberg collisions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Impact of hydrodynamics on seismic signals generated by iceberg collisions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Impact of hydrodynamics on seismic signals generated by iceberg collisions
      Available formats
      ×

Copyright

References

Hide All
Amundson, JM, Truffer, M, Lüthi, MP, Fahnestock, M, West, M and Motyka, RJ (2008) Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland. Geophys. Res. Lett., 35(22), L22501 (doi: 10.1029/2008GL035281)
Amundson, JM, Fahnestock, M, Truffer, M, Brown, J, Lüthi, MP and Motyka, RJ (2010) Ice melange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res., 115(F1), F01005 (doi: 10.1029/2009JF001405)
Brennen, CE (1982) A review of added mass and fluid inertial forces. US Department of the Navy, Port Hueneme, CA (Tech. Rep. CR82.010)
Burton, JC and 9 others (2010) Laboratory investigations of iceberg-capsize dynamics, energy dissipation and tsunamigenesis. J. Geophys. Res., 117(F1), F01009 (doi: 10.1029/2011JF002089)
Ekström, G, Nettles, M and Abers, GA (2003) Glacial earthquakes. Science, 302(5645), 622–624 (doi: 10.1126/science. 1088057)
Ekström, G, Nettles, M and Tsai, VC (2006) Seasonality and increasing frequency of Greenland glacial earthquakes. Science, 311(5768), 1756–1758 (doi: 10.1126/science.1122112)
Joughin, I and 8 others (2008) Ice-front variation and tidewater behavior on Helheim and Kangerdlugssuaq Glaciers, Greenland. J. Geophys. Res., 113(F1), F01004 (doi: 10.1029/2007JF000837)
MacAyeal, DR, Scambos, TA, Hulbe, CL and Fahnestock, MA (2003) Catastrophic ice-shelf break-up by an ice-shelf-fragment-capsize mechanism. J. Glaciol., 49(164), 22–36 (doi: 10.3189/172756503781830863)
MacAyeal, DR, Abbot, DS and Sergienko, OV (2011) Iceberg-capsize tsunamigenesis. Ann. Glaciol., 52(58), 51–56 (doi: 10.3189/172756411797252103)
Nettles, M and Ekström, G (2010) Glacial earthquakes in Greenland and Antarctica. Annu. Rev. Earth Planet. Sci., 38, 467–491 (doi: 10.1146/annurev-earth-040809-152414)
Nettles, M and 12 others (2008) Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland. Geophys. Res. Lett., 35(24), L24503 (doi: 10.1029/2008GL036127)
O’Neel, S, Marshall, HP, McNamara, DE and Pfeffer, WT (2007) Seismic detection and analysis of icequakes at Columbia Glacier, Alaska. J. Geophys. Res., 112(F3), F03S23 (doi: 10.1029/2006JF000595)
O’Neel, S, Larsen, CF, Rupert, N and Hansen, R (2010) Iceberg calving as a primary source of regional-scale glacier-generated seismicity in the St Elias Mountains, Alaska. J. Geophys. Res., 115(F4), F04034 (doi: 10.1029/2009JF001598)
Qamar, A (1988) Calving icebergs: a source of low-frequency seismic signals from Columbia Glacier, Alaska. J. Geophys. Res., 93(B6), 6615–6623 (doi: 10.1029/JB093iB06p06615)
Richardson, JP, Waite, GP, FitzGerald, KA and Pennington, WD (2010) Characteristics of seismic and acoustic signals produced by calving, Bering Glacier, Alaska. Geophys. Res. Lett., 37(3), L03503 (doi: 10.1029/2009GL041113)
Thomas, RH (1973) The creep of ice shelves: theory. J. Glaciol., 12(64), 45–53
Tsai, VC and Ekström, G (2007) Analysis of glacial earthquakes. J. Geophys. Res., 112(F3), F03522 (doi: 10.1029/2006JF000596)
Tsai, VC, Rice, JR and Fahnestock, M (2008) Possible mechanisms for glacial earthquakes. J. Geophys. Res., 113(F3), F03014 (doi: 10.1029/2007JF000944)
Walter, F, O’Neel, S, McNamara, DE, Pfeffer, T, Bassis, J and Fricker, HA (2010) Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska. Geophys. Res. Lett., 37(15), L15501 (doi: 10.1029/2010GL043201)
Walter, F, Amundson, JM, O’Neel, S, Truffer, M and Fahnestock, M, (in press) Analysis of low-frequency seismic signals generated during a multiple-iceberg calving event at Jakobshavn Isbræ, Greenland. J. Geophys. Res., (doi: 10.1029/2011JF002132)
Zhu, L and Rivera, LA (2002) A note on the dynamic and static displacements from a point source in multilayered media. Geophys. J. Int., 148(3), 619–627 (doi: 10.1046/j.1365-246X. 2002.01610.x)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed