Skip to main content Accessibility help
×
Home

Ice extent in sub-arctic fjords and coastal areas from 2001 to 2019 analyzed from MODIS imagery

  • Megan O'Sadnick (a1) (a2), Chris Petrich (a1), Camilla Brekke (a2) and Jofrid Skarðhamar (a3)

Abstract

Results examining variations in the ice extent along the Norwegian coastline based on the analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) images from 2001 to 2019, February through May, are presented. A total of 386 fjords and coastal areas were outlined and grouped into ten regions to assess seasonal and long-term trends in ice extent. In addition, three fjords were examined to investigate how ice extent may vary over short distances (<100 km). Of the 386 outlined, 47 fjords/coastal areas held >5 km2 of ice at least once between 2001 and 2019. Over this span of time, no statistically significant trend in ice extent is found for all ten regions; however, variations between regions and years are evident. Ice extent is assessed through comparison to three weather variables – freezing degree days (FDD), daily new snowfall and daily freshwater supply from rainfall plus snowmelt. Six out of ten regions are significantly positively correlated (p < 0.05) to FDD. In addition, ice in two regions is significantly positively correlated to daily new snowfall, and in one region negatively correlated to rainfall plus snowmelt. The importance of fjord geometry and bathymetry as well as other weather variables including wind is discussed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ice extent in sub-arctic fjords and coastal areas from 2001 to 2019 analyzed from MODIS imagery
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Ice extent in sub-arctic fjords and coastal areas from 2001 to 2019 analyzed from MODIS imagery
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Ice extent in sub-arctic fjords and coastal areas from 2001 to 2019 analyzed from MODIS imagery
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Megan O'Sadnick, E-mail: megan.osadnick@norut.no

References

Hide All
Anderson, DL (1961) Growth rate of sea ice. Journal of Glaciology 3(30), 11701172. doi: 10.3189/S0022143000017676
Arctic Marine Shipping Assessment (2009) Arctic Council April 2009, second printing. Tromsø: Arctic Council.
Arndt, S and Nicolaus, M (2014) Seasonal cycle and long-term trend of solar energy fluxes through Arctic sea ice. Cryosphere 8, 22192233. doi: 10.5194/tc-8-2219-2014
Arrigo, KR and 6 others (2014) Phytoplankton blooms beneath the sea ice in the Chukchi sea. Deep-Sea Research Part II: Topical Studies in Oceanography 105, 116. doi: 10.1016/j.dsr2.2014.03.018
Arrigo, K, Mock, T and Lizotte, M (2010) Primary producers and sea ice. In Thomas, D and Dieckmann, G (eds), Sea Ice, 1st Edn.Oxford: Wiley-Blackwell, pp. 283326.
Asplin, L, Salvanes, AGV and Kristoffersen, JB (1999) Nonlocal wind-driven fjord-coast advection and its potential effect on plankton and fish recruitment. Fisheries Oceanography 8(4), 255263. doi: 10.1046/j.1365-2419.1999.00109.x
Assur, A (1960) Composition of sea ice and its tensile strength. SIPRE Research Report 44.
Carroll, ML and 5 others (2017) MOD44W MODIS/Terra land water mask derived from MODIS and SRTM L3 global 250 m SIN grid V006 [data set]. NASA EOSDIS land processes DAAC. Available at doi: 10.5067/MODIS/MOD44W.006
Cottier, FR, Nilsen, F, Skogseth, R, Tverberg, V, Skarðhamar, J and Svendsen, H (2010) Arctic fjords: a review of the oceanographic environment and dominant physical processes. Geological Society, London, Special Publications 344(1), 3550.
Eilertsen, HC and Skardhamar, J (2006) Temperatures of north Norwegian fjords and coastal waters: variability, significance of local processes and air-sea heat exchange. Estuarine, Coastal and Shelf Science 67(3), 530538. doi: 10.1016/j.ecss.2005.12.006
Engeset, R (2016) How are weather and snow data produced for seNorge.no and XGEO.no? Available at https://www.nve.no/Media/4816/weatherandsnowdata_v2_en.pdf
Gade, HG (1986) Features of fjord and ocean interaction. In Hurdle, BG ed. The Nordic Seas. New York, NY: Springer, 183190. doi: 10.1007/978-1-4615-8035-5_7.
Gradinger, R (2009) Sea-ice algae: major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002. Deep-Sea Research Part II: Topical Studies in Oceanography 56(17), 12011212. doi: 10.1016/j.dsr2.2008.10.016
Granskog, MA, Ehn, J and Niemelä, M (2005) Characteristics and potential impacts of under-ice river plumes in the seasonally ice-covered Bothnian Bay (Baltic Sea). Journal of Marine Systems 53(1–4), 187196. doi: 10.1016/j.jmarsys.2004.06.005
Granskog, MA, Kaartokallio, H and Shirasawa, K (2003) Nutrient status of Baltic Sea ice: evidence for control by snow-ice formation, ice permeability, and ice algae. Journal of Geophysical Research 108, 3253. doi: 10.1029/2002JC001386.
Hallikainen, M (1994). Microwave remote sensing of low-salinity sea ice. In Carsey, FD (ed.), Microwave Remote Sensing of Sea ice, 68th Edn.American Geophysical Union, 361373. doi: 10.1029/GM068
Hopkins, CCE, Tande, KS and Grønvik, S (1984) Ecological investigations of the zooplankton community of Balsfjorden, Northern Norway. Journal of Experimental Marine Biology and Ecology 82, 7799.
Hughes, N (2006) NP57A, NP57B, NP58A, NP58B Norway Pilot. Sea Ice Conditions: West Coast of Norway from: Lindesnes to Statlandet, Statllandet to Risværfjorden. Offshore and Coastal Waters of Norway from: Risværfjorden to the North Part of Vesterrålen, Andfjorden to Varang. Argyll, UK: Scottish Association for Marine Science.
Ingram, RG, Wang, J, Lin, C, Legendre, L and Fortier, L (1996) Impact of freshwater on a subarctic coastal ecosystem under seasonal sea ice (southeastern Hudson Bay, Canada). I. Interannual variability and predicted global warming influence on river plume dynamics and sea ice *. Journal of Marine Systems 7, 221231.
Kaartokallio, H, Kuosa, H, Thomas, DN, Granskog, MA and Kivi, K (2007) Biomass, composition and activity of organism assemblages along a salinity gradient in sea ice subjected to river discharge in the Baltic Sea. Polar Biology 30, 183197. doi: 10.1007/s00300-006-0172-z
Kuzyk, ZA, Macdonald, RW, Granskog, MA and Scharien, RK (2008) Sea ice, hydrological, and biological processes in the Churchill River estuary region, Hudson Bay. Estuarine, Coastal and Shelf Science 77, 369384. doi: 10.1016/j.ecss.2007.09.030
Lussana, C, Tveito, O and Uboldi, F (2016) Senorge v2.0: an observational gridded dataset of temperature for Norway. Met. No Report 14.
Manak, DK and Mysak, LA (1989) On the relationship between arctic sea-ice anomalies and fluctuations in Northern Canadian air temperature and river discharge. Atmosphere-Ocean 27(4), 682691. doi: 10.1080/07055900.1989.9649361
Martin, S and Kauffman, P (1981) A field and laboratory study of wave damping by grease ice. Journal of Glaciology 27(96), 283313. doi: 10.3189/s0022143000015392
Nilsen, F, Cottier, F, Skogseth, R and Mattsson, S (2008) Fjord–shelf exchanges controlled by ice and brine production: the interannual variation of Atlantic Water in Isfjorden, Svalbard. Continental Shelf Research 28(14), 18381853.
Oggier, M, Eicken, H, Petrich, C, Wilkinson, J and O'Sadnick, M (2020) Crude oil migration in sea-ice: laboratory studies of constraints on oil mobilization and seasonal evolution. Cold Regions Science and Technology 174, 102924.
Ogi, M and Tachibana, Y (2001) Does the fresh water supply from the Amur River flowing in the sea of Okhotsk affect sea ice formation? Journal of the Meteorological Society of Japan 79(1), 123129.
O'Sadnick, M and 5 others (2018) Observations of ice conditions in Norwegian fjords during the winter of 2018 and implications for oil spill response. In Proceedings of the 41st AMOP Technical Seminar on Environmental Contamination and Response. Ottawa, ON, Canada.
Petrich, C and 6 others (2019) Mosideo/cirfa tank experiments on behavior and detection of oil in ice. In Proceedings of the 25th International Conference on Port and Ocean Engineering under Arctic Conditions. Delft, The Netherlands.
Petrich, C and Eicken, H (2010) Growth, structure, and properties of sea ice. In Thomas, D and Dieckmann, G (eds), Sea Ice, 2nd Edn.Oxford: Wiley Blackwell, pp. 2378.
Petrich, C, O'Sadnick, ME and Dale, L (2017) Recent ice conditions in North-Norwegian Porsangerfjorden. Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions, POAC.
Petrich, C, Tivy, AC and Ward, DH (2014) Reconstruction of historic sea ice conditions in a sub-Arctic lagoon. Cold Regions Science and Technology 98, 5562. doi: 10.1016/j.coldregions.2013.10.011
Skardhamar, J and 6 others (2018) Modelled salmon lice dispersion and infestation patterns in a sub-arctic fjord. ICES Journal of Marine Science, 75(5), 17331747. doi: 10.1093/icesjms/fsy035
Smedsrud, LH and Skogseth, R (2006) Field measurements of Arctic grease ice properties and processes. Cold regions science and technology 44(3), 171183.
Stigebrandt, A (1980) Some aspects of tidal interaction with fjord constrictions. Estuarine and Coastal Marine Science 11, 151166.
Stigebrandt, A and Aure, J (1989) Vertical mixing in basin waters of fjords. Journal of Physical Oceanography 19, 917926.
Svendsen, H (1995) Physical oceanography of coupled fjord-coast systems in northern Norway with special focus on frontal dynamics and tides. Ecology of Fjords and Coastal Waters. Amsterdam: Elsevier, 149164.
Timco, G and Frederking, RM (1982) Flexural strength and fracture toughness of sea ice. Cold Regions and Technology 8, 3541.
Tucker, W, Perovich, DK, Gow, AJ, Weeks, WF and Drinkwater, MR (1994) Chapter 2. Physical properties of sea ice relevant to remote sensing. In Carsey, FD ed. Microwave Remote Sensing of Sea ice, 68th Edn.American Geophysical Union, 928. doi: 10.1029/GM068.
Vermote, E (2015) MOD09A1 MODIS/terra surface reflectance 8-day L3 global 500 m SIN grid V006. NASA EOSDIS Land Processes DAAC 10.
Weeks, WF and Ackley, SF (1986) The growth, structure, and properties of sea ice. In The geophysics of sea ice Boston, M: Springer, pp. 9164.

Keywords

Ice extent in sub-arctic fjords and coastal areas from 2001 to 2019 analyzed from MODIS imagery

  • Megan O'Sadnick (a1) (a2), Chris Petrich (a1), Camilla Brekke (a2) and Jofrid Skarðhamar (a3)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.