Skip to main content Accessibility help
×
×
Home

How do sea-ice concentrations from operational data compare with passive microwave estimates? Implications for improved model evaluations and forecasting

  • Walter N. Meier (a1), Florence Fetterer (a2), J. Scott Stewart (a2) and Sean Helfrich (a3)

Abstract

Passive microwave sensors have produced a 35 year record of sea-ice concentration variability and change. Operational analyses combine a variety of remote-sensing inputs and other sources via manual integration to create high-resolution, accurate charts of ice conditions in support of navigation and operational forecast models. One such product is the daily Multisensor Analyzed Sea Ice Extent (MASIE). The higher spatial resolution along with multiple input data and manual analysis potentially provide more precise mapping of the ice edge than passive microwave estimates. However, since MASIE is based on an operational product, estimates may be inconsistent over time due to variations in input data quality and availability. Comparisons indicate that MASIE shows higher Arctic-wide extent values throughout most of the year, largely because of the limitations of passive microwave sensors in some conditions (e.g. surface melt). However, during some parts of the year, MASIE tends to indicate less ice than estimated by passive microwave sensors. These comparisons yield a better understanding of operational and research sea-ice data products; this in turn has important implications for their use in climate and weather models.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      How do sea-ice concentrations from operational data compare with passive microwave estimates? Implications for improved model evaluations and forecasting
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      How do sea-ice concentrations from operational data compare with passive microwave estimates? Implications for improved model evaluations and forecasting
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      How do sea-ice concentrations from operational data compare with passive microwave estimates? Implications for improved model evaluations and forecasting
      Available formats
      ×

Copyright

References

Hide All
Agnew, T and Howell, SEL (2003) The use of operational ice charts for evaluating passive microwave ice concentration data. Atmos.–Ocean, 41(4), 317331 (doi: 10.3137/ao.410405)
Andersen, S, Tonboe, R, Kaleschke, L, Heygster, G and Pedersen LT (2007) Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice. J. Geophys. Res., 112(C8), (C08004) (doi: 10.1029/ 2006JC003543)
Cavalieri, DJ (1994) A microwave technique for mapping thin sea ice. J. Geophys. Res., 99(C6), (12 561–12 572) (doi: 10.1029/ 94JC00707)
Cavalieri, DJ Gloersen, P and Campbell WJ (1984) Determination of sea ice parameters with the NIMBUS 7 SMMR. J. Geophys. Res., 89(D4), (5355–5369) (doi: 10.1029/JD089iD04p05355)
Cavalieri, DJ and 6 others (1991) Aircraft active and passive microwave validation of sea ice concentration from the Defense Meteorological Satellite Program special sensor microwave imager. J. Geophys. Res., 96(C12), (21989–22 008) (doi: 10.1029/ 91JC02335)
Cavalieri, DJ Parkinson, CL Gloersen, P, Comiso JC and Zwally HJ (1999) Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J. Geophys. Res., 104(C7), (15803–15 814) (doi: 10.1029/1999JC900081)
Cavalieri, DJ Markus, T and Comiso, JC (2003) AMSR-E/Aqua Daily L3 12.5 km brightness temperature, sea ice concentration, and snow depth polar grids. Version 2. NASA Distributed Active Archive Center/National Snow and Ice Data Center, Boulder, CO
Collins, M and 13 others (2013) Long-term climate change: projections, commitments and irreversibility. In Stocker TF and 9 others eds Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
Comiso, JC (1986) Characteristics of Arctic winter sea ice from satellite multispectral microwave observations. J. Geophys. Res., 91 (C1), 975–994 (doi: 10.1029/JC091iC01p00975)
Comiso, JC and Nishio, F (2008) Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res., 113(C2), (C02S07) (doi: 10.1029/ 2007JC004257)
Emery, WJ Fowler, C and Maslanik, J (1994) Arctic sea ice concentrations from special sensor microwave imager and advanced very high resolution radiometer satellite data. J. Geophys. Res., 99(C9), (18329–18 342) (doi: 10.1029/94JC01413)
Eppler, DT and 14 others (1992) Passive microwave signatures of sea ice. In Carsey FD and 7 others eds Microwave remote sensing of sea ice. (Geophysical Monograph Series 68) American Geophysical Union, Washington, DC, 4771
Fetterer, F, Knowles, K, Meier, W and Savoie, M (2002) Sea ice index (updated 2013). National Snow and Ice Data Center, Boulder, CO. Digital media: http://nsidc.org/data/seaice_index
Grenfell, TC and 7 others (1992) Considerations for microwave remote sensing of thin sea ice. In Carsey FD and 7 others eds Microwave remote sensing of sea ice. (Geophysical Monograph Series 68) American Geophysical Union, Washington, DC, 291–301
Helfrich, SR McNamara, D, Ramsay, BH Baldwin, T and Kasheta, T (2007) Enhancements to, and forthcoming developments in, the Interactive Multisensor Snow and Ice Mapping System (IMS). Hydrol. Process., 21(12), 15761586 (doi: 10.1002/hyp.6720)
Markus, T and Cavalieri DJ (2000) An enhancement of the NASA Team sea ice algorithm. IEEE Trans. Geosci. Remote Sens., 38(3), 13871398 (doi: 10.1109/36.843033)
Meier, WN (2005) Comparison of passive microwave ice concentration algorithm retrievals with AVHRR imagery in Arctic peripheral seas. IEEE Trans. Geosci. Remote Sens., 43(6), 13241337 (doi: 10.1109/TGRS.2005.846151)
National Ice Center (NIC) and National Snow and Ice Data Center (NSIDC) (2010) Multisensor analyzed sea ice extent – Northern Hemisphere (MASIE-NH). comp. Fetterer F, Savoie|M, Helfrich S and Clemente-Colón P. National Snow and Ice Data Center, Boulder, CO. Digital media: http://nsidc.org/data/g02186
Parkinson, CL and Comiso JC (2013) On the 2012 record low Arctic sea ice cover: combined impact of preconditioning and an August storm. Geophys. Res. Lett., 40(7), 13561361 (doi: 10.1002/grl.50349)
Partington, KC (2000) A data fusion algorithm for mapping sea-ice concentrations from Special Sensor Microwave/Imager data. IEEE Trans. Geosci. Remote Sens., 38(4), 19471958
Steffen, K and Schweiger, A (1991) NASA team algorithm for sea ice concentration retrieval from Defense Meteorological Satellite Program special sensor microwave imager: comparison with Landsat satellite imagery. J. Geophys. Res., 96(C12), (21 971–21 987) (doi: 10.1029/91JC02334)
Thomas, DR (1993) Arctic sea ice signatures for passive microwave algorithms. J. Geophys. Res., 98(C6), (10 037–10 052) (doi: 10.1029/93JC00140)
Zhang, J, Lindsay, R, Schweiger, A and Steele, M (2013) The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Geophys. Res. Lett., 40(4), 720726 (doi: 10.1002/grl.50190)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed