Skip to main content Accessibility help
×
Home

High net accumulation rates at Campo deHielo Patagόnico Sur, South America, revealed by analysis of a 45.97 m long ice core

  • Takayuki Shiraiwa (a1), Shiro Kohshima (a2), Ryu Uemura (a3), Naohiro Yoshida (a3), Sumito Matoba (a1), Jun Uetake (a2) and Maria Angelica Godoi (a4)...

Abstract

A 45.97 m long ice core was recovered in the accumulation area of Glaciar Tyndall (50˚59’05’’ S, 73˚31’12’’W; 1756ma.s.l.), Campo de Hielo Patagόnico Sur (southern Patagonia icefield), during December 1999. the firn core was subjected to visual stratigraphic observation and bulk density measurements in the field, and later to analyses of water isotopes (δ18O, δD), major dissolved ions and snow algal biomass. the drillhole remained dry down to about 43 m depth, where a water-soaked layer appeared. Seasonal cycles were found for δ18O, δD and the D-excess, although the amplitudes of the cycles decreased with depth. Major dissolved ions (Na+, K+, Mg2+, Ca2+, Cl, SO4 2–) and algal biomass exhibit rapid decreases in the upper 3 m, probably due to meltwater elution. Annual increments defined by the δ18O and D-excess peaks suggest that the minimum net accumulation rates at this location were 17.8ma–1 in 1997/98–1998/99 and 411.0 ma–1 in 1998/99–1999/2000. These are much higher values than those previously obtained from past ice-core studies in Patagonia, but are of the same order of magnitude as those predicted from various observations in ablation areas of Patagonian glaciers.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      High net accumulation rates at Campo deHielo Patagόnico Sur, South America, revealed by analysis of a 45.97 m long ice core
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      High net accumulation rates at Campo deHielo Patagόnico Sur, South America, revealed by analysis of a 45.97 m long ice core
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      High net accumulation rates at Campo deHielo Patagόnico Sur, South America, revealed by analysis of a 45.97 m long ice core
      Available formats
      ×

Copyright

References

Hide All
Aniya, M., Sato, H., Naruse, R., Skvarca, P. and Casassa, G.. 1996. The use of satellite and airborne imagery to inventory outlet glaciers of the Southern Patagonia Icefield, South America. Photogramm. Eng. Remote Sensing , 62(12),13611369.
Aristarain, A.J. and Delmas, R.J.. 1993. Firn-core study from the southern Patagonia ice cap, South America. J. Glaciol. , 39(132), 249254.
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus , 16(4), 436468.
Davies, T.D. Vincent, C. E. and Brimblecombe, P.. 1982. Preferential elution of strong acids from a Norwegian ice cap. Nature , 300(5888),161163.
Escobar, F., Vidal, F., Garín, C. and Naruse, R.. 1992. Water balance in the Patagonia icefield. In Naruse, R. and Aniya, M.. eds. Glaciological researches in Patagonia, 1990. Nagoya, Japanese Society of Snow and Ice. DataCenter for Glacier Research, 109119.
Fujiyoshi, Y., Kondo, H., Inoue, J. and Yamada, T.. 1987. Characteristics of precipitation and vertical structure of air temperature in the northern Patagonia. Bull. Glacier Res. 4,1523.
Godoi, M., Shiraiwa, T., Kohshima, S. and Kubota, K.. In press. Firn-core drilling operation at Tyndall Glacier, Southern Patagonia Icefield. In Sepulveda, F., Casassa, G. and Sinclair, R.. eds. the Patagonian icefields: a unique natural laboratory for environmental and climate change studies. NewYork, Kluwer/Plenum.
Houghton, J.T.L. Filho, G.M., Callander, B.A., Harris, N., Kattenberg, A. and Maskell, K.. 1996. Climate change 1995: the science of climate change. Cambridge, etc., Cambridge University Press.
Kawashima, K. andYamada, T.. 1997. Experimental studies on the transformation from firn to ice in the wet-snow zone of temperate glaciers. Ann. Glaciol. , 24,181185.
Keene, W.C., Pszenny, A.A.P., Galloway, J.N.and Hawley, M. E.. 1986. Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J. Geophys. Res. , 91(D6), 66476658.
Kohshima, S., Shiraiwa, T., Godoi, M., Kubota, K., Takeuchi, N. and Shinbori, K.. 2002. Ice core drilling at Southern Patagonia Icefield − development of a new portable drill and the field campaignin 1999. Natl. Inst. Polar Res. Mem., Special Issue 56, 4958.
Krouse, H.R. West, K., Hislop, R., Brown, H.M. and Smith, J.L.. 1977. Climatic and spatial dependence of the retention ofD/HandO18/O16 abundances in snow and ice of North America. International Association of Hydrological Sciences Publication 118 (Symposiumat Grenoble 1975−Isotopes and Impurities in Snow and Ice), 242247.
Matsuoka, K. and Naruse, R.. 1999. Mass balance features derived from a firn core at Hielo Patagόnico Norte, South America. Arct. Antarct. Alp. Res. , 31(4), 333340.
Meier, M.F. 1984. Contribution of small glaciers to global sea level. Science , 226(4681),14181421.
Oerlemans, J. and Fortuin, J.P.F.. 1992. Sensitivity of glaciers and small ice caps to greenhouse warming. Science , 258(5079),115117.
Rott, H., Stuefer, M., Siegel, A., Skvarca, P. and Eckstaller, A.. 1998. Mass fluxes and dynamics of Moreno Glacier, Southern Patagonia Icefield. Geophys. Res. Lett. , 25(9),14071410.
Schotterer, U., Fröhlich, K., Gäggeler, H.W., Sandjordj, S. andStichler, W.. 1997. Isotope records from Mongolian and Alpine ice cores as climate indicators. Climatic Change , 36(3–4), 519530.
Skvarca, P. and Naruse, R.. 1997. Dynamic behavior of Glaciar PeritoMoreno, southern Patagonia. Ann. Glaciol. , 24, 268271.
Warren, C.R. and Sugden, D.E.. 1993. The Patagonian icefields: a glaciological review. Arct. Alp. Res. , 25(4),316331.
Wilson, T.R. S. 1975. Salinity and the major elements of sea water. In Riley, J. P. and Skittow, G.. eds. Chemical oceanography .Vol. 1. London, Academic Press, 365413.
Yamada, T. 1987. Glaciological characteristics revealed by 37.6-m deep core drilled at the accumulation area of San Rafael Glacier, the Northern Patagonia Icefield. Bull. Glacier Res. 4, 5967.
Yoshimura, Y., Kohshima, S., Takeuchi, N., Seko, K. and Fujita, K.. 2000. Himalayan ice-core dating with snow algae. J. Glaciol. , 46(153),335340.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed