Skip to main content Accessibility help
×
Home

Glacier changes in the Koshi River basin, central Himalaya, from 1976 to 2009, derived from remote-sensing imagery

  • Donghui Shangguan (a1) (a2), Shiyin Liu (a1), Yongjian Ding (a1), Lizong Wu (a1), Wei Deng (a3), Wanqin Guo (a1), Yuan Wang (a1), Junli Xu (a1), Xiaojun Yao (a1), Zhilong Guo (a1) and Wanwan Zhu (a1)...
  • Please note a correction has been issued for this article.

Abstract

We use remote-sensing and GIS technologies to monitor glacier changes in the Koshi River basin, central Himalaya. The results indicate that in 2009 there were 2061 glaciers in this region, with a total area of 3225 ±90.3 km2. This glacier population is divided into 1290 glaciers, with a total area of 1961 ±54.9 km2, on the north side of the Himalaya (NSH), and 771 glaciers, with a total area of 1264 ± 35.4 km2, on the south side of the Himalaya (SSH). From 1976 to 2009, glacier area in the basin decreased by about 19±5.6% (0.59±0.17%a–1). Glacier reduction was slightly faster on SSH (20.3 ±5.6%) than on NSH (18.8±5.6%). The maximum contribution to glacier area loss came from glaciers within the 1-5 km2 area interval, which accounted for 32% of total area loss between 1976 and 2009. The number of glaciers in the Koshi River catchment decreased by 145 between 1976 and 2009. Glacier area on SSH decreased at a rate of 6.2 ±3.2% (0.68 ±0.36% a–1), faster than on NSH, where the rate was 2.5 ±3.2% (0.27±0.36% a–1) during 2000-09. Based on records from Tingri weather station, we infer that temperature increase and precipitation decrease were the main causes of glacier thinning and retreat during the 1976-2000 period. Glacier retreat during the 2000-09 period appears to be controlled by temperature increase, since precipitation increase over this period did not offset ice losses to surface melting.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Glacier changes in the Koshi River basin, central Himalaya, from 1976 to 2009, derived from remote-sensing imagery
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Glacier changes in the Koshi River basin, central Himalaya, from 1976 to 2009, derived from remote-sensing imagery
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Glacier changes in the Koshi River basin, central Himalaya, from 1976 to 2009, derived from remote-sensing imagery
      Available formats
      ×

Copyright

References

Hide All
Allison, I, Barry, RG and Goodison, B eds. (2001) Climate and cryosphere (CLiC) project. Science and Co-ordination Plan, Version 1. (WCRP-114/WMO/TD No. 1053) World Climate Research Programme/World Meteorological Organization, Geneva
Bajracharya, SR and Mool, P (2009) Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal. Ann. Glaciol., 50(53), 8185
Benn, DI and 9 others (2012) Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Sci. Rev., 114(1–2), 156174 (doi: 10.1016/j.earscirev.2012.03.008)
Bhambri, R, Bolch, T, Kawishwar, P, Dobhal, DP, Srivastrava, D and Pratap, B (2013) Heterogeneity in glacier response in the upper Shyok valley, northeast Karakoram. Cryosphere, 7(4), 13851398 (doi: 10.5194/tc-7-1385-2013)
Bolch, T and 7 others (2010) A glacier inventory for the western Nyainqentanglha Range and Nam Co Basin, Tibet, and glacier changes 1976–2009. Cryosphere, 4(2), 429467
Bolch, T, Pieczonka, T and Benn, DI (2011) Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere, 5(2), 349358 (doi: 10.5194/tc-5-349-2011)
Bolch, T and 10 others (2012) The state and fate of Himalayan glaciers. Science, 336(6079), 310314 (doi: 10.1126/science. 1215828)
Cheng, G (1996) The role of cryosphere in climate change. In Cheng, G. ed. Proceedings of the 5th Chinese Conference on Glaciology and Geocryology, 18–22 August 1996, Lanzhou, China. Gansu Culture Press, Lanzhou, 807817 [in Chinese with English summary]
Frey, H, Paul, F and Strozzi, T (2012) Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges and results. Remote Sens. Environ., 124, 832843 (doi: 10.1016/j.rse.2012.06.020)
Fujita, K and Nuimura, T (2011) Spatially heterogeneous wastage of Himalayan glaciers. Proc. Natl Acad. Sci. USA (PNAS), 108(34), 14 011–14014 (doi: 10.1073/pnas.1106242108)
Gardner, AS and 15 others (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852857 (doi: 10.1126/science.1234532)
Haeberli, W and Beniston, M (1998) Climate change and its impacts on glaciers and permafrost in the Alps. Ambio, 27(4), 258265
Han, H, Ding, Y and Liu, S (2006) A simple model to estimate ice ablation under a thick debris layer. J. Glaciol., 52(179), 528536 (doi: 10.3189/172756506781828395)
Han, H, Wang, J, Wei, J and Liu, S (2010) Backwasting rate on debris-covered Koxkar glacier, Tuomuer mountain, China. J. Glaciol., 56(196), 287296 (doi: 10.3189/002214310791968430)
Jacob, T, Wahr, J, Pfeffer, WT and Swenson, S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature, 482(7386), 514518
Jin, R, Xin, L, Che, T, Wu, L and Mool, P (2005) Glacier area changes in the Pumqu river basin, Tibetan Plateau, between the 1970s and 2001. J. Glaciol., 51(175), 607610 (doi: 10.3189/ 172756505781829061)
Kääb, A, Berthier, E, Nuth, C, Gardelle, J and Arnaud, Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 488(7412), 495498 (doi: 10.1038/nature11324)
Kargel, JS, Cogley, JG, Leonard, GJ, Haritashya, U and Byers, A (2011) Himalayan glaciers: the big picture is a montage. Proc. Natl Acad. Sci. USA (PNAS), 108(36), 1470914710
Kulkarni, AV and 6 others (2007) Glacial retreat in Himalaya using Indian remote sensing satellite data. Curr. Sci., 92(1), 6975
Li, Z, Sun, W and Zeng, Q (1998) Measurement of glacier variation in the Tibetan Plateau using Landsat data. Remote Sens. Environ., 63(3), 258264 (doi: 10.1016/S0034-4257(97)00140-5)
Mool, PK, Bajracharya, SR and Joshi, SP (2001) Inventory of glaciers, glacial lakes and glacial lake outburst floods: monitoring and early warning systems in the Hindu Kush–Himalayan region, Nepal. International Centre for Integrated Mountain Development with United Nations Environment Programme/Regional Resource Centre for Asia and the Pacific, Kathmandu
Nie, Y, Zhang, Y, Liu, L and Zhang, J (2010) Monitor glacier change based on remote sensing in the Mt. Qomolangma National Nature Preserve, 1976–2006. Acta Geogr. Sin., 65(1), 1328 [in Chinese with English summary]
Nuimura, T, Fujita, K, Yamaguchi, S and Sharma, RR (2012) Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region, Nepal Himalayas, 1992–2008. J. Glaciol., 58(210), 648656 (doi: 10.3189/2012JoG11J061)
Parry, ML, Canziani, OF, Palutikof, JP, Van der Linden, PJ and Hanson, CE (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
Paul, F (2000) Evaluation of different methods for glacier mapping using Landsat TM. In. A Decade of Trans-European Remote Sensing Cooperation. Proceedings of the 20th EARSeL Symposium, 14–16 June 2000, Dresden, Germany. AA Balkema, Rotterdam, 239245
Paul, F, Kääb, A, Maisch, M, Kellenberger, T and Haeberli, W (2002) The new remote-sensing-derived Swiss glacier inventory: I. Methods. Ann. Glaciol., 34, 355361 (doi: 10.3189/ 172756402781817941)
Paul, F, Huggel, C and Kääb, A (2004) Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens. Environ., 89(4), 510518 (doi: 10.1016/j.rse.2003.11.007)
Paul, F and 19 others (2013) On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol., 54(63 Pt 1), 171182 (doi: 10.3189/2013AoG63A296)
Rajchal, R (2006) Population status, distribution, management, threats and migration measures of Himalayan musk deer (Moschus chrysogaste.) in Sagarmatha National Park. A report submitted to DNPWC/TRPAP, Babarmahal, Kathmandu, Nepal. Institute of Forestry, Pokhara
Raup, B and Khalsa, SJS (2007) GLIMS data analysis tutorial. http://www.glims.org/MapsAndDocs/assets/GLIMS_Analysis_Tutorial_a4.pdf
Ren, J, Qin, D, Kang, S, Hou, S, Pu, J and Jing, Z (2004) Glacier variations and climate warming and drying in the central Himalayas. Chinese Sci. Bull., 49(1), 6569 (doi: 10.1007/BF02901744)
Ren, J, Jing, Z, Pu, J and Qin, X (2006) Glacier variations and climate change in the central Himalaya over the past few decades. Ann. Glaciol., 43, 218222 (doi: 10.3189/172756406781812230)
Richardson, SD and Reynolds, JM (2000) An overview of glacial hazards in the Himalayas. Quat. Int., 65/66, 3147
Salerno, F, Buraschi, E, Bruccoleri, G, Tartari, G and Smiraglia, C (2008) Glacier surface-area changes in Sagarmatha national park, Nepal, in the second half of the 20th century, by comparison of historical maps. J. Glaciol., 54(187), 738752 (doi: 10.3189/002214308786570926)
Scherler, D, Bookhagen, B and Strecker, MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geosci., 4(3), 156159 (doi: 10.1038/ ngeo1068)
Schomacker, A (2008) What controls dead-ice melting under different climate conditions? A discussion. Earth-Sci. Rev., 90(3–4), 103113 (doi: 10.1016/j.earscirev.2008.08.003)
Shukla, A, Arora, MK and Gupta, RP (2010) Synergistic approach for mapping debris-covered glaciers using optical–thermal remote sensing data with inputs from geomorphometric parameters. Remote Sens. Environ., 114(7), 13781387 (doi: 10.1016/ j.rse.2010.01.015)
Silverio, W and Jaquet, J-M (2005) Glacial cover mapping (1987–1996) of the Cordillera Blanca (Peru) using satellite imagery. Remote Sens. Environ., 95(3), 342350 (doi: 10.1016/ j.rse.2004.12.012)
Walter, F, O’Neel, S, McNamara, DE, Pfeffer, T, Bassis, J and Fricker, HA (2010) Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska. Geophys. Res. Lett., 37(15), L15501 (doi: 10.1029/2010GL043201)
Wang, Y (2013) Variation analysis of glaciers and glacial lakes in the past 46 years in Mt. Everest area: [D]. University of Chinese Academy of Sciences, Beijing, 2733 [in Chinese with English summary]
JrWilliams, RS, Hall, DK and Chien, JYL (1997) Comparison of satellite-derived with ground-based measurements of the fluctuations of the margins of Vatnajökull, Iceland, 1973–92. Ann. Glaciol., 24, 7280
Yang, X, Zhang, T, Qin, D, Kang, S and Qin, X (2011) Characteristics and changes in air temperature and glacier’s response on the north slope of Mt. Qomolangma (Mt. Everest). Arct. Antarct. Alp. Res., 43(1), 147160 (doi: 10.1657/1938-4246-43.1.147)
Yao, T and 14 others (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2(9), 663667 (doi: 10.1038/nclimate1580)
Ye, Q, Yao, T, Kang, S, Chen, F and Wang, J (2006) Glacier variations in the Naimona’nyi region, western Himalaya, in the last three decades. Ann. Glaciol., 43, 385389 (doi: 10.3189/ 172756406781812032)
Ye, Q, Zhong, Z, Kang, S, Stein, A, Wei, Q and Liu, J (2009) Monitoring glacier and supra-glacier lakes from space in Mt. Qomolangma region of the Himalayas on the Tibetan Plateau in China. J. Mt. Sci. [China], 6, 211220 (doi: 10.1007/s11629-009-1016-4)
Zhang, W., Su, Z. and T. Li, (2001) Dynamic features of glacier in the Hailuogou.. In Zhong, XH ed. Environment and ecosystem in the eastern edge of Qinghai–Xizang Plateau. Sichuan University Press, Chengdu, 81101 [in Chinese with English summary]

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: