Skip to main content Accessibility help
×
Home

Evaluation of the shear frame test for weak snowpack layers

  • Bruce Jamieson (a1) and Colin D. Johnston (a1)

Abstract

The shear frame allows testing of thin weak snowpack layers that are often critical for slab avalanche release. A shear metal frame with an area of 0.01–0.05 m2 is used to grip the snow a few mm above a buried weak snowpack layer. Using a force gauge, the frame is pulled until a fracture occurs in the weak layer within 1 s. The strength is calculated from the maximum force divided by the area of the frame. Finite-element studies show that the shear stress in the weak layer is concentrated below the cross-members that subdivide the frame and where the weak layer is notched at the front and back of the frame. Placing the bottom of the frame in the weak layer increases the stress concentrations, and results in significantly lower strength measurements than placing the bottom of the frame a few mm above the weak layer. Based on over 800 sets of 7–12 tests in western Canada, coefficients of variation average 14% and 18% from level study plots and avalanche start zones, respectively. Consequently,sets of 12 tests typically yield a precision of the mean of 10% with 95% confidence, which is sufficient for monitoring of strength change of weak layers over time in study plots. With consistent technique, there is no significant difference in mean strength measurements obtained by different experienced shear frame operators using the same approximate loading rate and technique for placing the frame. Although fracture surfaces are usually planar, only one of eleven shapes of non-planar fracture surfaces showed significantly different strength compared to planar fracture surfaces. For weak layers thick enough for density measurements, the shear strength is plotted against density and grain form. From these data, empirical equations are determined to estimate the shear strength of weak snowpack layers.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Evaluation of the shear frame test for weak snowpack layers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Evaluation of the shear frame test for weak snowpack layers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Evaluation of the shear frame test for weak snowpack layers
      Available formats
      ×

Copyright

References

Hide All
Ballard, G. E. H. and Feldt, E. D.. 1965. Considerations of the strength of snow. CRREL Res.Rep 184
Brun, E. and Rey, L.. 1987. Field study on snow mechanical properties with special regard to liquid water content. International Association of Hydrologcial Sciences Publication 162 (Symposium at Davos 1986 –– Avalanche Formation, Movement and Effects), 183192.
Canadian Avalanche Association (CAA). 1995. Observation guidelines and recording standards for weather, snowpack and avalanches. Revelstoke, B.C., Canadian Avalanche Association.
Colbeck, S. C. and 7 others. 1990. The international classification for seasonal snow on the ground. Wallingford, Oxon, International Association of Scientific Hydrology. International Commission on Snow and Ice.
Daniels, H. E. 1945. The statistical theory of the strength of bundles of threads. Proc. R. Soc. London, Ser. A, 183(995), 405435.
De Quervain, M. 1951. Strength properties of a snow cover and its measurement [Die Festigkeitseigenschaften der Schneedecke und ihre Messung]. SIPRE Transl 9
Fohn, P. M. B. 1987a. The “Rutschblock” as a practical tool for slope stability evaluation. International Association of Hydrologcial Sciences Publication 162 (Symposium at Davos 1986-Avalanche Formation, Movement and Effects), 223228.
Föhn, P. M. B 1987b. The stability index and various triggering mechanisms. International Association of Hydrological Sciences Publication 162 (Symposium at Davos 1986 –– Avalanche Formation, Movement and Effects), 195214
Föhn, P.M. B. 1993. Characteristics of weak snow layers or interfaces. In Armstrong, R., ed. ISSW ’92. A merging of theory and practice. International Snow Science Workshop, 4–8 October 1992, Breckenridge, Colorado. Proceedings. Denver, CO, Avalanche Information Center, 160170.
Föhn, P. and Camponovo, C.. 1997. Improvements by measuring shear strength of weak layers. In ISSW ’96. International Snow Science Workshop, 6–10 October 1996, Banff, Alberta. Proceedings. Revelstoke, B.C., Canadian Avalanche Association, 158162.
Föhn, P. M. B., Camponovo, C. and Krusi, G.. 1998. Mechanical and structural properties of weak snow layers measured in situ. Ann. Glaciol., 26,16.
Fukuzawa, T. and Narita, H.. 1993. An experimental study on mechanical behavior of a depth hoar under shear stress. In Armstrong, R., ed. ISSW ’92. A merging of theory and practice. International Snow Science Workshop, 4–8 October 1992, Breckenridge, Colorado. Proceedings. Denver, CO, Avalanche Information Center, 171175.
Gubler, H. 1978. An alternate statistical interpretation of the strength of snow. J. Glaciol, 20(83), 343357.
Jamieson, J. B. 1989. In situ tensile strength of snow in relation to slab avalanches. (M.Sc. thesis, University of Calgary. Department of Civil Engineering.)
Jamieson, J. B. 1995. Avalanche prediction for persistent snow slabs. (Ph.D. thesis, University of Calgary.)
Jamieson, J. B. and Johnston, C. D.. 1990. In-situ tensile tests of snow-pack layers. J. Glaciol., 36(122), 102106.
Jamieson, J. B. and Johnston, C. D.. 1998. Refinements to the stability index for skier-triggered dry-slab avalanches. Ann. Glaciol., 26, 296302.
Keeler, C. M. 1969. The growth of bonds and the increase of mechanical strength in a dry seasonal snow-pack. J. Glacial., 8(54), 441450.
Keeler, C. M. and Weeks, W. E. 1968. Investigations into the mechanical properties of alpine snow-packs. J. Glaciol., 7(50), 253271
Martinelli, M. Jr. 1971. Physical properties of alpine snow as related to weather and avalanche conditions. U.S. For. Serv. Res. Pap RM-64.
Mattson, D. E. 1981. Statistics: difficult concepts, understandable explanations. St Louis, MO, Mosby.
Mellor, M. 1975. A review of basic snow mechanics. International Association of Hydrological Sciences Publication 114 (Symposium at Grindelwald 1974––Snow Mechanics), 251291.
Narita, H. 1980. Mechanical behaviour and structure of snow under uniaxial tensile stress. J. Glacial., 26(94), 275282.
Perla, R. 1977. Slab avalanche measurements. Can. Geotech. J., 14(2), 206213.
Perla, R. and Beck, T. M. H.. 1983. Experience with shear frames. J. Glacial., 29(103), 485491.
Perla, R., Beck, T. M. H. and Cheng, T. T.. 1982. The shear strength index of alpine snow. Cold Reg. Sci. Technol, 6(1), 1120.
Roch, A. 1966a. Les declenchements d’avalanches. International Association of Scientific Hydrology Publication 69 (Symposium at Davos 1965-Scientific Aspects of Snow and Ice Avalanches), 182195.
Roch, A. 1966b. Les variations de la resistance de la neige. International Association of Scientific Hydrology Publication 69 (Symposium at Davos 1965 –– Scientific Aspects of Snow and Ice Avalanches), 8699.
Schleiss, V G. and Schleiss, W. E.. 1970. Avalanche hazard evaluation and forecast, Rogers Pass, Glacier National Park. In Gold, L.W. and Williams, G. P., eds. Ice engineering and avalanche forecasting. Ottawa, Ont., National Research Council of Canada. Associate Committee on Geotechnical Research, 115–122. (ACGRTech. Mem. 98.)
Singh, H. 1980. A finite-element model for the prediction of dry slab avalanches. (Ph.D. thesis, Colorado State University.)
Sommerfeld, R. A. 1973. Statistical problems in snow mechanics. U.S. For. Serv. Gen. Tech. Rep RM-3, 2936.
Sommerfeld, R. A. 1980. Statistical models of snow strength. J. Glacial, 26(94), 217223.
Sommerfeld, R. A. 1984. Instructions for using the 250 cm2 shear frame to evaluate the strength of a buried snow surface. U.S. For. Serv. Res. Note RM-446, 16.
Sommerfeld, R. A. and King, R. M.. 1979. A recommendation for the application of the Roch index for slab avalanche release. J. Glacial., 22(88), 547549.
Sommerfeld, R. A., King, R. M. and Budding, E.. 1976. A correction factor for Roch’s stability index of slab avalanche release. J. Glacial., 17(75), 145147
Statsoft. 1994. Statistica Volume I: general conventions and statistics I. Tulsa, OK, Statsoft.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed