Skip to main content Accessibility help
×
Home

Enhanced thermodynamic ice growth by sea-ice deformation

  • Petra Heil (a1), Victoria I. Lytle (a2) and Ian Allison (a2)

Abstract

Sca-icc drift and deformation were measured with an array of drifting buoys during a 1995 winter experiment off the East Antarctic continental shelf south of the Antarctic Divergence. The buoys were configured so that deformation of the icefield could be monitored on a range of spatial scales from 2 to 130 km. The mean hourly drift rate during the 3 week-long experiment was 0.21 m s−1, and the mean daily translation of the field was 17.3 km. Differential kinematic parameters calculated from the data show a very high short-term variance, indicating that high-frequency processes are dominant. Spectral analysis of the velocity data shows a major peak of the energy spectrum at the frequency of passage of synoptic weather systems, and a second peak at the inertial frequency. A major storm event occurred during the experiment. Net divergence over this phase of the experiment, as measured by a five-buoy array, is small compared to the short-period variance. This alternating divergence and convergence has a marked effect on the net ice growth. Intense freezing and rapid new ice formation occurs in the open water areas formed during divergence, and this is thickened by rafting and ridge-building during the subsequent convergence. New open water areas equivalent to 10% of the total area formed during the first phase of the experiment. A one-dimensional multilayer thermodynamic model of ice growth shows that this led to an increase of 2.8 cm in the area-averaged ice growth over a 7 day interval, which is equivalent to 40-50% of the total estimated ice growth over the region.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Enhanced thermodynamic ice growth by sea-ice deformation
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Enhanced thermodynamic ice growth by sea-ice deformation
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Enhanced thermodynamic ice growth by sea-ice deformation
      Available formats
      ×

Copyright

References

Hide All
Allison, I. 1989. The East Antarctic sea ire zone: ire characteristics and drift. Geojournal. 18(1). 102115.
Allison, I. and Worby, A.. 1994. Seasonal changes of sea-ice characteristics off East Antarctica. Ann. Glaciol., 20, 195–201.
CLS Argos. 1985. User manual. 1. Touilouse, CLS Argos.
Heil, P., Allison, I. and Lytle, V. I., 1990. Seasonal and intcrannual variations of the oceanic heat flux under a landlast Antarctic sea ice cover. J Goephys. Res., 101(C11), 25,741–25,752.
Hibler, W. D., III. Heil, P. and Lytle, V. I.. 1998. On simulating high-frequency variability in Antarctic sca-icc dynamics models. Ann. Glaciol. 27 (see paper in this volume).
Jeffries, M. O. and Weeks, W. E.. 1993. Structural characteristic) and development of sea ice in the western Ross Sea. Antarct. Sci., 5(1), 6375.
Kirwan, A. D. Jr., 1975. Oceanic velocity gradients. J. Phys. Oreanogr., 5(10), 729735.
Kottmeier, C., Olf, J., Frieden, W. and Roth, R.. 1992. Wind forcing and ice motion in the Weddell Sea region. J. Genphys. Res., 97(D18), 20,373–20,383.
Lange, M. A. 1988. Basic properties of Antarctic sea ice as revealed by textural analysis of ice cores. Ann. Glucitd., 10, 95–101.
Launiainen, J. and Vihma, T.. 1994. On the surface heat Muxes in the Weddell Sea. in Johannessen, O. M., Muench, R. D. and Overland, J. E., eds. The polar oceans and their role in shaping the global environment: the Nansen Centennial volume. Washington, DC. American Geophysical Linion. 399419. (Geophysical Monograph 85.)
Limbert, D. W. S., Morrison, S. J., Sear, C. B., Wadharms, P. and Rowe, M. A.. 1989. Pack-ice motion in the Weddell Sea in relation to weather systems and determination of a Weddell Sea sea-ice budget. Ann. Glaciol., 12, 104112.
Massom, R. A. 1992. Observing the advection of sea ice in the Weddell Sea using buoy and satellite passive microwave data. J. Geophys. Res., 97(C10), 15,559-15,572.
Maykut, G. A. 1986. The surface heat and mass balance. In Untersteiner, N., ed. Geophysics of sea ice. Loudon, etc., Plenum Press, 395—163. (NATO ASI Series B: Physics 146.)
Molinari, R. and Kirwan, A. D.. 1975. Calculations of differential kinematic properties from Lagrangian observations in the western Caribbean Sea. J. Phys. Oceanogr., 5(7), 483–491.
National Oceanic and Atmospheric Administration (NOAA). 1988. ETOPO-5 bathymetry/topography data. Digital relief of the surface of the Earth. Boulder, CO, U. S. Department of Commerce. National Oceanic and Atmospheric Administration. National Geophysical Data Center. Data Announcement 88-MGG-02.)
Saucier, W. J. 1955. Principles of meteorological analysis. Chicago, IL. University of Chicago Press.
Wadhams, P., Sear, G. R., Crane, D. R., Rnwe, M. A.. Morrison, S. J. and Limbert, D. W. S. 1989. Basin-scale ice motion and deformation in the Weddell Sea during in inter. Ann. Glaciol., 12, 178186.
Wessel, P. and Smith, W. H. F.. 1991. free software helps map and display data. EOS, 72(41), 441, 445446.
Worby, A. P., Bindoff, N. L., Lytle, V. I., Allison, I. and Massom, R. A.. 1996. Winter ocean/sea ice interactions in the East Antarctic pack ice. EOS, 77(46), 453, 456457.
Worby, A. P., Massom, R. A., Allison, I., Lytle, V. and Heil, P.. 1998. Last Antarctic sea ice: a review of its structure, properties and drift. in M. O., Jeffries, ed. Antarctic sea ice: physical processes, interactions and variability. Washington, DC, American Geophysical Union, 4167. (Antarctic Research Series 74.)

Related content

Powered by UNSILO

Enhanced thermodynamic ice growth by sea-ice deformation

  • Petra Heil (a1), Victoria I. Lytle (a2) and Ian Allison (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.