Skip to main content Accessibility help
×
Home

Elucidating changes in the degree of tracer dispersion in a subglacial channel

  • Thomas Schuler (a1) and Urs H. Fischer (a1)

Abstract

Tracer injections into a subglacial channel at Unteraargletscher, Switzerland, were repeated at intervals of about 2 hours over two diurnal discharge cycles in August and September 2000. Records of dye concentration reveal a pronounced hysteresis in the velocity–dispersion relationship, thereby indicating alterations in the drainage system. Theoretical considerations for Röthlisberger channels suggest an evolution of the conduit cross-section in response to a diurnally varying discharge. We studied the relation between conduit cross-section and tracer dispersion with numerical tracer experiments. The velocity field for steady flow through a given conduit geometry is calculated using a commercial flow solver. Tracer transport is represented by a scalar volume which is advected by the velocity field. Experiments were conducted for several scenarios by varying flow velocity, conduit geometry and conduit roughness. Results show only a weak dependence of dispersion on conduit size. In contrast, changes in roughness of the conduit walls reveal a strong effect on tracer dispersion. Therefore, to explain the observed hysteresis in the velocity–dispersion relationship, we suggest that the evolution of a subglacial flow path might involve changes in roughness.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Elucidating changes in the degree of tracer dispersion in a subglacial channel
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Elucidating changes in the degree of tracer dispersion in a subglacial channel
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Elucidating changes in the degree of tracer dispersion in a subglacial channel
      Available formats
      ×

Copyright

References

Hide All
Box, G. E.P., Jenkins, G. M. and Reinsel, G. C. 1994. Time series analysis forecasting and control. Third edition. Englewood Cliffs, NJ, Prentice-Hall.
Collins, D. N. 1982. Flow-routing of meltwater in an alpine glacier as indicated by dye tracer tests. Beitr. Geol. Schweiz, Ser. Hydrol. 28, 523–534.
Fountain, A. G. 1993. Geometry and flow conditions of subglacial water at South Cascade Glacier, Washington State, U.S.A.; an analysis of tracer injections. J. Glaciol., 39(131), 143–156.
Harlow, F. H. and Nakayama, P. I. 1967. Turbulence transport equations. Phys. Fluids, 10(11), 2323–2332.
Hauns, M. 1999. Modeling tracer and particle transport under turbulent flow conditions in karst conduit structures. (Ph.D. thesis, Université de Neuchatel. Centre d’Hydrogeologie.)
Hauns, M., Jeannin, P.-Y. and F. Hermann. 1998. Tracer transport in karst underground rivers: tailing effect from channel geometry. Bull. Hydrogeol., 16, 123–142.
Hauns, M., Jeannin, P.-Y. and Atteia, O. 2001. Dispersion, retardation and scale effect in tracer breakthrough curves in karst conduits. J. Hydrol., 241(3), 177–193.
Hock, R. and Le, R. Hooke, B. 1993. Evolution of the internal drainage system in the lower part of the ablation area of Storglaciaren, Sweden. Geol. Soc. Am. Bu ll., 105(4), 537–546.
Hubbard, B. P., Sharp, M. J., Willis, I. C., Nielsen, M. K. and Smart, C. C. 1995. Borehole water-level variations and the structure of the subglacial hydrological system of Haut Glacier d’Arolla, Valais, Switzerland. J. Glaciol., 41(139), 572–583.
Kohler, J. 1995. Determining the extent of pressurized flow beneath Storglaciären, Sweden, using results of tracer experiments and measurements of input and output discharge. J. Glaciol., 41(138), 217–231.
Kreft, A. and Zuber, A. 1978. Physical meaning of the dispersion equation and its solutions for different initial and boundary conditions. Chem. Eng. Sci., 33(11), 1471–1480.
Launder, B.E. and Spalding, D.B. 1974. The numerical computation of turbulent flow. Comput. Methods Appl. Mech. Eng., 3(2), 269–289.
Murray, T. and Clarke, G. K. C. 1995. Black-box modeling of the subglacial water system. J. Geophys. Res., 100(B7), 10, 231–10, 245.
Nienow, P.W., Sharp, M. J. and Willis, I.C. 1996. Velocity–dischargerelationships derived from dye tracer experiments in glacial meltwaters: implications for subglacial flow conditions. Hydrol. Processes, 10, 1411–1426.
Röthlisberger, H. 1972. Water pressure in intra- and subglacial channels. J. Glaciol., 11(62), 177–203.
Sauty, J.-P. and Kinzelbach, W. 1988. On the identiftcation of the parameters of groundwater mass transport. In Custodio, E., Gurgui, A. and Ferreira, J. P., eds. Groundwater flow andquality modelling. Dordrecht, Reidel Publishing Company, 33–56.
Schuler, T. 2002. Investigation of water drainage throughanalpine glacier by tracer experiments and numerical modeling. Eid g. Tech. Hoch schule, Zürich. Versuchsanst. Wasserbau, Hydrol. Glaziol. Mitt. 177. (ETH Ph.D. thesis No. 14835.)
Seaberg, S.Z., Seaberg, J. Z., Le, R. Hooke, B. and Wiberg, D.W. 1988. Characterof the englacial and subglacial drainage system in the lower part of the ablation area of Storglaciaren, Sweden, as revealed by dye-trace studies. J. Glaciol., 34(117), 217–227.
Spring, U. and Hutter, K. 1982. Conduit flow of a fluid through its solid phase and its application to intraglacial channel flow. Int. J. Eng. Sci., 20(2), 327–363.
Taylor, G. I. 1954. The dispersion of matter inturbulent flow through a pipe. Proc. R. Soc. London, Ser. A, 223(1155), 446–468.
Willis, I. C., Sharp, M. J. and Richards, K. S. 1990. Configuration of the drainage system of Midtdalsbreen, Norway, as indicated by dye-tracing experiments. J. Glaciol., 36(122), 89–101.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed