Skip to main content Accessibility help
×
Home

Elevation changes measured on Svalbard glaciers and ice caps from airborne laser data

  • Jonathan L. Bamber (a1), William Krabill (a2), Vivienne Raper (a1), Julian A. Dowdeswell (a3) and J. Oerlemans (a4)...

Abstract

Precise airborne laser surveys were conducted during spring in 1996 and 2002 on 17 ice caps and glaciers in the Svalbard archipelago covering the islands of Spitsbergen and Nordaustlandet. We present the derived elevation changes. Lower-elevation glaciers in south Spitsbergen show the largest thinning rates of ∼ 0.5 m a-1, while some of the higher, more northerly ice caps appear to be close to balance. The pattern of elevation change is complex, however, due to several factors including glacier aspect, microclimatological influences and the high natural annual variability in local accumulation and ablation rates. Anomalous changes were observed on Fridtjovbreen, which started surging in 1996, at the start of the measurement period. On this glacier, thinning (of > 0.6 m a-1) was observed in the accumulation area, coincident with thickening at lower elevations. Asymmetric thinning was found on two ice caps on Nordaustlandet, with the largest values on the eastern side of Vestfonna but the western slopes of Vegafonna. The mean elevation change for all ice masses was -0.19 m a-1 w.e., which is 1.6 times the net mass-balance value determined for the last 30 years. Using mass-balance sensitivity estimates for Svalbard suggests that the implied increase in negative balance is linked to warmer air temperatures in the late 1990s. Multiple linear regression suggests that mass balance is most closely correlated with latitude, rather than mean altitude or longitude.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Elevation changes measured on Svalbard glaciers and ice caps from airborne laser data
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Elevation changes measured on Svalbard glaciers and ice caps from airborne laser data
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Elevation changes measured on Svalbard glaciers and ice caps from airborne laser data
      Available formats
      ×

Copyright

References

Hide All
Abdalati, W. and 9 others. 2001. Outlet glacier and margin elevation changes: near-coastal thinning of the Greenland ice sheet. J. Geophys. Res., 106(D24), 33,72933,742.
Angell, J.K. 2000. Tropospheric temperature variations adjusted for El Niño, 1958–1998. J. Geophys. Res., 105(D9), 11,84111,849.
Bamber, J.L., Krabill, W.B., Raper, V. and Dowdeswell, J.A.. 2004. Anomalous growth of part of a large Arctic ice cap: Austfonna, Svalbard. Geophys. Res. Lett., 31(12), L12402. (10.1029/ 2004Gl019667.)
Bevington, P.R. and Robinson, D.K.. 1992. Data reduction and error analysis for the physical sciences, New York, McGraw-Hill Inc.
Dowdeswell, J.A. and 10 others. 1997. The mass balance of circum-Arctic glaciers and recent climate change. Quat. Res., 48(1), 114.
Dyurgerov, M.B. and Meier, M.F.. 1997. Year-to-year fluctuations of global mass balance of small glaciers and their contribution to sea-level changes. Arct. Alp. Res., 29(4), 392402.
Forman, S.L. and 6 others. 2004. A review of postglacial emergence on Svalbard, Franz Josef Land and Novaya Zemlya, northern Eurasia. Quat. Sci. Rev., 23, 13911434.
Hagen, J.O., Melvold, K., Pinglot, F. and Dowdeswell, J.A.. 2003. On the net mass balance of the glaciers and ice caps in Svalbard, Norwegian Arctic. Arct. Antarct. Alp. Res., 35(2), 264270.
Krabill, W.B., Thomas, R.H., Martin, C.F., Swift, R.N. and Frederick, E.B.. 1995. Accuracy of airborne laser altimetry over the Greenland ice sheet. Int. J. Remote Sensing, 16(7), 12111222.
Krabill, W. and 9 others. 2000. Greenland Ice Sheet: high-elevation balance and peripheral thinning. Science, 289(5478), 428430.
Murray, T., Luckman, A., Strozzi, T. and Nuttall, A.M.. 2003. The initiation of glacier surging at Fridtjovbreen, Svalbard. Ann. Glaciol., 36, 110116.
Oerlemans, J. and Reichert, B.K.. 2000. Relating glacier mass balance to meteorological data by using a seasonal sensitivity characteristic. J. Glaciol., 46(152), 16.
Oerlemans, J. and 8 others. 2005. Estimating the contribution from Arctic glaciers to sea-level change in the next 100 years. Ann. Glaciol., 42 (see paper in this volume).
Raper, V., Bamber, J. and Krabill, W.. 2005. Interpretation of the anomalous growth of Austfonna, Svalbard, a large Arctic ice cap. Ann. Glaciol., 42 (see paper in this volume).
Schytt, V. 1969. Some comments on glacier surges in eastern Svalbard. Can. J. Earth Sci., 6(4), 867873.
Serreze, M.C. and 9 others. 2000. Observational evidence of recent change in the northern high-latitude environment. Climatic Change, 46(2), 159207.
Serreze, M.C. and 9 others. 2003. A record minimum Arctic sea ice extent and area in 2002. Geophys. Res. Lett., 30(3), 1110. (10.1029/2002GL016406.)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed