Skip to main content Accessibility help
×
Home

Effect of western U.S. snow cover on climate

  • Susan Marshall (a1), Robert J. Oglesby (a2) and Anne W. Nolin (a3)

Abstract

The purpose of this study is to identify characterize and quantify local, regional and remote effects of snow cover on western U. S. climate and water resources. An ensemble of predictability and sensitivity studies was made with the U.S. National Center for Atmospheric Research (NCAR) Community Climate Model, version 3 (CCM3) to investigate the relative roles of snow-cover anomalies and initial atmospheric states in the subsequent accumulation and ablation seasons. The suite of model experiments focuses on the direct effect of snow on regional climate anomalies and ultimately will be used to examine the lagged effect of anomalous snow cover on the climate. The set of ensemble simulations presented here looks at the climate-system response to anomalously high and low snow cover at the start of the ablation season over the western U.S.A. These current results suggest that the initial state of snow cover is more important than the initial state of the atmosphere or of sea-surface temperatures because of direct thermal effects on the surface and subsequent indirect, dynamical effects on the atmospheric circulation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of western U.S. snow cover on climate
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of western U.S. snow cover on climate
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of western U.S. snow cover on climate
      Available formats
      ×

Copyright

References

Hide All
Baker, D. G., Ruschy, D. L., Skaggs, R. H. and Wall, D. B.. 1992. Air temperature and radiation depressions associated with a snowcover. J. Appl. Meteorol., 31, 247254.
Barnett, T. P., Dumenil, L., Schlese, V., Roeckner, E. and Latif, M.. 1989. The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46(5), 661685.
Bonan, G. B. 1998. The land surface climatology of the NCAR Land Surface Model (LSM 1.0) coupled to the NCAR Community Climate Model (CCM3). J. Climate, 11(6), 13071326.
Boville, B. A. and Gent, P. R.. 1998. The NCAR climate system model, version one. J. Climate, 11 (6), 11151130.
Cayan, D. R. 1996. Interannual climate variability and snowpack in the western United States. J. Climate, 9(5), 928948.
Clark, M. P. and Serreze, M. C.. In press. Effects of variations in east Asian snow cover on modulating atmospheric circulation over the North Pacific Ocean. J. Climate.
Dewey, K. F. 1977. Daily maximum and minimum temperature forecasts and the influence of snow cover. Man. Weather Rev., 105,15941597.
Dickson, R. and Namias, J.. 1976. North American influence on the circulation and climate of the North Atlantic sector. Mon. Weather Rev., 104(7), 12551265.
Foster, J., Owe, M. and Rango, A.. 1983. Snow cover and temperature relationships in North America and Eurasia. J. Climate Appl. Meteorol., 22(3), 460469.
Groisman, P. Ya., Karl, T. R. and Knight, R. W.. 1994. Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science, 263(5144), 198200.
Groisman, RYa., Genikhovich, E. L., Bradley, R. S. and Ilyin, B. M.. 1997. Assessing surface-atmosphere interactions using former Soviet Union standard meteorological network data. Part II: Cloud and snow cover effects. J. Climate, 10(9), 21842199.
Gutzler, D. S. and Preston, J.W.. 1997. Evidence for a relationship between spring snow cover in North America and summer rainfall in New Mexico. Geophys.Res. Lett., 24(17), 22072210.
Hack, J. J., Kiehl, J. T. and Hurrell, J.. 1998. The hydrologic and thermodynamic characteristics of the NCARCCM3. J. Climate, 11(6), 11791206.
Heim, R. Jr and Dewey, K. F.. 1984. Circulation patterns and temperature fields associated with extensive snow cover on the North American continent. Phys. Geogr, 4,6685.
Kiehl, J. T., Hack, J.J., Bonan, G. B., Boville, B. A., Williamson, D. L. and Rasch, P.J.. 1998. The National Center for Atmospheric Research Community Climate Model: CCM3. J. Climate, 11(6), 11311149.
Leathers, D. J., Ellis, A. W. and Robinson, D. A.. 1995. Characteristics of temperature depressions associated with snow cover across the northeast United States. J. Appl. Meteorol., 34(2), 381390.
Marshall, S. and Oglesby, R.J.. 1994. An improved snow hydrology for GCMs. Part 1: Snow cover fraction, albedo, grain size, and age. Climate Dyn., 10(1–2), 2137.
Oglesby, R.J., Marshall, S., Roads, J. O. and Robertson, F. R.. In press. Diagnosing warm season precipitation over the GCIP region from a model and reanalysis. J. Geophys. Res.
Wagner, A.J. 1973. The influence of average snow depth on monthly mean temperature anomaly. Mon. Weather Rev., 101, 624626.
Walsh, J. E., Tueck, D. R. and Peterson, M. R.. 1982. Seasonal snow cover and short-term climate fluctuations over the United States. Mon. Weather Rev, 110(10), 14741485.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed