Skip to main content Accessibility help
×
×
Home

Diurnal seismicity cycle linked to subsurface melting on an ice shelf

  • Douglas R. MacAyeal (a1), Alison F. Banwell (a2) (a3), Emile A. Okal (a4), Jinqiao Lin (a1), Ian C. Willis (a2) (a3), Becky Goodsell (a1) and Grant J. MacDonald (a1)...

Abstract

Seismograms acquired on the McMurdo Ice Shelf, Antarctica, during an Austral summer melt season (November 2016–January 2017) reveal a diurnal cycle of seismicity, consisting of hundreds of thousands of small ice quakes limited to a 6–12 hour period during the evening, in an area where there is substantial subsurface melting. This cycle is explained by thermally induced bending and fracture of a frozen surface superimposed on a subsurface slush/water layer that is supported by solar radiation penetration and absorption. A simple, one-dimensional model of heat transfer driven by observed surface air temperature and shortwave absorption reproduces the presence and absence (as daily weather dictated) of the observed diurnal seismicity cycle. Seismic event statistics comparing event occurrence with amplitude suggest that the events are generated in a fractured medium featuring relatively low stresses, as is consistent with a frozen surface superimposed on subsurface slush. Waveforms of the icequakes are consistent with hydroacoustic phases at frequency $ {\bf \gt} \bf 75\,{\bf Hz}$ and flexural-gravity waves at frequency $ \bf {\bf \lt}25\,{\bf Hz}$ . Our results suggest that seismic observation may prove useful in monitoring subsurface melting in a manner that complements other ground-based methods as well as remote sensing.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Diurnal seismicity cycle linked to subsurface melting on an ice shelf
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Diurnal seismicity cycle linked to subsurface melting on an ice shelf
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Diurnal seismicity cycle linked to subsurface melting on an ice shelf
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

References

Hide All
Abrahamson, NA and Silva, WJ (1997) Empirical response spectral attenuation relations for shallow crustal earthquakes. Seis. Res. Lett., 68(1), 94127 (doi: 10.1785/gssrl.68.1.94)
Anderson, JG and Lei, Y (1994) Nonparametric description of peak acceleration as a function of magnitude, distance, and site in Guerrero, Mexico. Bull. Seism. Soc. Am., 84, 10031017
Banwell, AF (2017) Ice-shelf stability questioned. Nature, 544(7650), 306307 (doi: 10.1038/544306a)
Banwell, AF and MacAyeal, DR (2015) Ice-shelf fracture due to viscoelastic flexure stress induced by fill/drain cycles of supraglacial lakes. Ant. Sci., 27(6), 587597 (doi: 10.1017/S0954102015000292)
Banwell, AF, MacAyeal, DR and Sergienko, OV (2013) Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes. Geophys. Res. Lett., 40(22), 58725876 (doi: 10.1002/2013GL057694)
Banwell, AF and 5 others (2014) Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, West Greenland: a comparative study. Ann. Glaciol., 55(66), 18 (doi: 10.3189/2014AoG66A049)
Banwell, AF and 6 others (2017) Calving and rifting on the McMurdo Ice Shelf, Antarctica. Ann. Glaciol., 58(74), 7887 (doi: 10.1017/aog.2017.12)
Bassis, JN and 7 others (2007) Seismicity and deformation associated with ice-shelf rift propagation. J. Glaciol., 53(183), 523536 (doi: 10.3189/002214307784409207)
Bažant, ZP (1992) Large-scale thermal bending fracture of sea ice plates. J. Geophys. Res. Oceans, 97(C11), 1773917751 (doi: 10.1029/92JC00816)
Bell, RE and 9 others (2017) Antarctic ice shelf potentially stabilized by export of meltwater in surface river. Nature, 544(7650), 344348 (doi: 10.1038/nature22048)
Bromirski, PD and Stephen, RA (2012) Response of the Ross Ice Shelf, Antarctica, to ocean gravity-wave forcing. Ann. Glaciol., 53(60), 163172 (doi: 10.3189/2012AoG60A058)
Bromirski, PD, Sergienko, OV and MacAyeal, DR (2010) Transoceanic infragravity waves impacting Antarctic ice shelves. Geophys. Res. Lett., 37, L02502 (doi: 10.1029/2009GL041488)
Campbell, S, Courville, Z, Sinclair, S and Wilner, J (2017) Brine, englacial structure and basal properties near the terminus of McMurdo Ice Shelf, Antarctica. Ann. Glaciol., 58(74), 111 (doi: 10.1017/aog.2017.26)
Carmichael, JD, Pettit, EC, Hoffman, M, Fountain, A and Hallet, B (2012) Seismic multiplet response triggered by melt at Blood Falls, Taylor Glacier, Antarctica. J. Geophys. Res. Earth Surf., 117, F03004 (doi: 10.1029/2011JF002221)
Cathles, LM IV, Okal, EA and MacAyeal, DR (2009) Seismic observations of sea swell on the floating Ross Ice Shelf, Antarctica. J. Geophys. Res. Earth Surf., 114, F02015 (doi: 10.1029/2007JF000934)
Chaput, J and 10 others (2018) Near-surface environmentally forced changes in the Ross ice Shelf observed with ambient seismic noise. Geophys. Res. Lett., 45 (doi: 10.1029/2018GL079 66 5)
Debenham, F (1965) The genesis of the McMurdo Ice Shelf, Antarctica. J. Glaciol., 5(42), 829832 (doi: 10.3189/S0022143000018888)
Deiz, A and 8 others (2016) Ice shelf structure derived from dispersion curve analysis of ambient seismic noise, Ross Ice Shelf, Antarctica. Geophys. J. Int., 205(2), 785795 (doi: 10.1093/gji/ggw036)
Dudko, YV (1999) Analysis of seismo-acoustic emission from ice fracturing events during SIMI'94, PhD Dissertation, Massachusetts Institute of Technology, Boston, USA, 187 pages
Dunbar, GB, Bertler, NAN and McKay, RM (2009) Sediment flux through the McMurdo Ice Shelf in Windless Bight, Antarctica. Glob. Planet. Change., 69(3), 8793 (doi: 10.1016/j.gloplacha.2009.05.07)
Evans, RJ and Untersteiner, N (1971) Thermal cracks in floating ice sheets. J. Geophys. Res., 76(3), 694703 (doi: 10.1029/JC076i003p00694)
Ewing, M and Crary, AP (1934) Propagation of elastic waves in ice. Part II. Physics, 5(7), 181184 (doi: 10.1063/1.1745249)
Ewing, M and Worzel, JL (1948) Long-range sound transmission. Geol. Soc. Am. Mem., 27, 132 (doi: 10.1130/MEM27-3-p1)
Francis, TJG, Porter, LT and McGrath, JR (1977) Ocean-bottom seismograph observations on the Mid-Atlantic Ridge near latitude 37°N. Geol. Soc. Amer. Bull., 88, 664677
Glasser, NF and Scambos, TA (2008) A structural glaciological analysis of the 2002 Larsen B ice shelf collapse. J. Glaciol., 54(184), 316 (doi: 10.3189/002214308784409017)
Glasser, NF, Goodsell, B, Copland, L and Lawson, W (2006) Debris characteristics and ice-shelf dynamics in the ablation region of the McM Ice Shelf, Antarctica. J. Glaciol., 52(177), 223234 (doi: 10.3189/172756506781828692)
Gutenberg, B and Richter, CF (1954) Seismicity of the Earth and associated phenomena. Princeton University Press, Princeton, N.J., 310 p
Hatherton, T and Evison, FF (1962) A special mechanism for some Antarctic earthquakes. New Zealand J. Geol. Geophys., 5(5), 864873 (doi: 10.1080/00288306.1962.10417642)
Holland, PR and 6 others (2011) The air content of Larsen Ice Shelf. Geophys. Res. Lett., 38, L10503 (doi: 10.1029/2011GL047245)
Hubbard, B and 12 others (2016) Massive subsurface ice formed by refreezing of ice-shelf melt ponds. Nature Comm., 7, 11897 (doi: 10.1038/ncomms11897)
Hulbe, CL and 5 others (2016) Tidal bending and strand cracks at the Kamb Ice Stream grounding line, West Antarctica. J. Glaciol., 62(235), 816824 (doi: 10.1017/jog.2016.74)
Hunkins, K (1960) Seismic studies of sea ice. J. Geophys. Res., 65(10), 34593472 (doi: 10.1029/JZ065i010p03459)
Jarvinen, O and Leppäranta, M (2013) Solar radiation transfer in the surface snow layer in Dronning Maud Land, Antarctica. Polar Science, 7(1), 117 (doi: 10.1016/j.polar.2013.03.002)
Kellogg, DE and Kellogg, TB (1987) Diatoms of the McMurdo Ice Shelf, Antarctica: Implications for sediment and biotic reworking. Paleo. Paleo. Paleo., 60, 7796 (doi: 10.1016/0031-0182(87)90025-3)
Kingslake, J, Ely, JC, Das, I and Bell, RE (2017) Widespread movement of meltwater onto and across Antarctic ice shelves. Nature, 544(7650), 349352 (doi: 10.1038/nature22049)
Klokov, V and Diemand, D (1995) Glaciology of the McMurdo Ice Shelf in the area of air operations. Contributions to Antarctic research IV. Antarc. Res. Ser., 67, 175195 (doi: 10.1002/9781118668207.ch10)
Kuipers Munneke, P and 6 others (2018) Intense winter surface melt on an Antarctic ice shelf. Geophys. Res. Lett., 45, 76157623 (doi: 10.1029/2018GL077899)
Lenaerts, JTM and 12 others (2017) Meltwater produced by wind-albedo interaction stored in an East Antarctic ice shelf. Nature Clim. Chg., 7, 5862 (doi: 10.1038/nclimate3180)
Leppäranta, M, Jarvinen, O and Mattila, O-P (2012) Structure and life cycle of supraglacial lakes in Dronning Maud Land. Ant. Sci., 25(3), 457467 (doi: 10.1017/S0954102012001009)
Lin, J (2017) Seismic Observations on the Melting McMurdo Ice Shelf, Antarctica. MS thesis, University of Chicago, 46 pp
Lipovsky, BP and Dunham, EM (2016) Tremor during ice-stream stick slip. Cryosphere, 10, 385399 (doi: 10.5194/tc-10-385-2016)
MacAyeal, DR (2018) Seismology gets under the skin of the Antarctic Ice Sheet. Geophys. Res. Lett., 45 (doi: 10.1029/2018GL080366)
MacAyeal, DR, Sergienko, OV and Banwell, AF (2015a) A model of viscoelastic ice-shelf flexure. J. Glaciol., 61(228), 635645 (doi: 10.3189/2015JoG14J169)
MacAyeal, DR, Wang, Y and Okal, EA (2015b) Ambient seismic, hydroacoustic, and flexural gravity wave noise on a tabular iceberg. J. Geophys. Res. Earth Surf., 120(2), 200211 (doi: 10.1002/2014JG003250)
Macdonald, G, Banwell, AF and MacAyeal, DR (2018) Seasonal evolution of supraglacial lakes on a floating ice tongue, Petermann Glacier, Greenland. Ann. Glaciol., 59(76pt. 1), 5665 (doi: 10.1017/aog.2018.9)
McNutt, SR (2002) Volcano seismology and monitoring for eruptions. In Lee, WHK, Kanamori, H, Jennings, PC and Kisslinger, C eds. International Handbook of Earthquake and Engineering Seismology, Academic Press, New York, 383406
Milne, AR (1972) Thermal tension cracking in sea ice: a source of under ice noise. J. Geophys. Res., 77(12), 21772192 (doi: 10.1029/JC077i012p02177)
Mogi, K (1962) Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes (2nd Paper). Bull. Earthq. Res. Inst. Tokyo Univ., 40, 831853
Okal, EA and Kirby, SH (1995) Frequency-moment distribution of deep earthquakes: implications for the seismogenic zone at the bottom of slabs. Phys. Earth Planet. Inter., 92, 169187 (doi: 10.1016/0031-9201(95)03037-8)
Okal, EA and Romanowicz, BA (1994) On the variation of b-value with earthquake size. Phys. Earth Planet. Inter., 87, 5576 (doi: 10.1016/0031-9201(94)90021-3)
Paige, RA (1968) Subsurface melt pools in the McMurdo Ice Shelf, Antarctica. J. Glaciol., 7(51), 511516 (doi: 10.3189/S0022143000020700)
Podolskiy, EA and Walter, F (2016) Cryoseismology. Rev. Geophys., 54(4), 708758 (doi: 10.1002/2016RG000526)
Podolskiy, EA, Fujita, K, Sunako, S, Tsushima, A and Kayastha, RB (2018) Nocturnal thermal fracturing of a Himalayan debris covered glacier revealed by ambient seismic noise. Geophys. Res. Lett., 45, 96999709 (doi: 10.1029/2018GL079653)
Press, F and Ewing, M (1951) Propagation of elastic waves in a floating ice sheet. Trans. of Amer. Geophys. U., 32(5), 673678 (doi: 10.1029/TR032i005p00673)
Rack, W, Haas, C and Langhorne, PJ (2013) Airborne thickness and freeboard measurements over the McMurdo Ice Shelf, Antarctica and implications for ice density. J. Geophys. Res. Oceans, 118(11), 58995907 (doi: 10.1002/2013JC009084)
Rundle, JB (1998) Derivation of the complete Gutenberg-Richter magnitude-frequency relation using the principle of scale invariance. J. Geophys. Res., 94, 1233712342 (doi: 10.1029/93JB02037)
Scambos, T, Hulbe, C, Fahnestock, M and Bohlander, J (2000) The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol., 46, 516530 (doi: 10.3189/172756500781833043)
Scambos, T and 7 others (2009) Ice shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins ice shelf break-ups. Earth Plan. Sci. Lett., 280(1–4), 5160 (doi: 10.1016/j.epsl.2008.12.027)
Scholz, CH (1968) The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull. Seismol. Soc. Amer., 58(1), 399415
Sergienko, OV and MacAyeal, DR (2005) Surface melting on Larsen Ice Shelf, Antarctica. Ann. Glaciol., 40, 215218 (doi: 10.3189/172756405781813474)
Smith, IJ, Langhorn, PJ, Frew, RD, Vennell, R and Haskell, TG (2012) Sea ice growth rates near ice shelves. Cold. Reg. Sci. Technol., 83–84, 5770 (doi: 10.1016/j.coldregions.2012.06.005)
Swithinbank, CWM (1968) Ice movement in the McMurdo Sound area of Antarctica. Int. Symp. Antarctic Glaciological Exploration (ISAGE), Int. Assoc. Sci. Hydrol. SCAR, 86, 472487
Trusel, LD and 6 others (2016) Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nature Geo., 8, 927932 (doi: 10.1038/ngeo2563)
van den Broeke, M (2005) Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophys. Res. Lett., 32, L12815 (doi: 10.1029/2005GL023247)
Walter, F, Deichmann, N and Funk, M (2008) Basal icequakes during changing subglacial water pressures beneath Gornergletscher, Switzerland. J. Glaciol., 54(186), 511521 (doi: 10.3189/002214308785837110)
Winberry, JP, Anandakrishnan, S and Alley, RB (2009) Seismic observations of transient subglacial water-flow beneath MacAyeal Ice Stream, West Antarctica. Geophys. Res. Lett., 36, L11502 (doi: 10.1029/2009GL037730)
Winberry, JP, Anandakrishnan, S, Wiens, DA and Alley, RB (2013) Nucleation and seismic tremor associated with the glacial earthquakes of Whillans Ice Stream, Antarctica. Geophys. Res. Lett., 40, 312315 (doi: 10.1002/grl.50130)
Xie, Y and Farmer, DM (1994) Seismic-acoustic sensing of sea ice wave mechanical properties. J. Geophys. Res., 99(C4), 77717786 (doi: 10.1029/93JC03483)
Yang, TC and Yates, TW (1995) Flexural waves in a floating ice sheet: Modeling and comparison with data. J. Acoust. Soc. of Am., 97(2), 971977 (doi: 1121/1.412076)
Yuan, ATE, McNutt, SR and Harlow, DH (1984) Seismicity and eruptive activity at Fuego Volcano, Guatemala: February 1975 – January 1977. J. Volcan. Geotherm. Res., 21, 277296
Zhan, Z, Tsai, VC, Jackson, JM and Helmberger, D (2014) Ambient noise correlation on the Amery Ice Shelf, East Antarctica. Geophys. J. Int., 196, 17961802 (doi: 10.1093/gji/ggt488)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed