Skip to main content Accessibility help

Constraining turbulent heat flux parameterization over a temperate maritime glacier in New Zealand

  • J.P. Conway (a1) and N.J. Cullen (a1)


The turbulent sensible and latent heat fluxes are important components of the surface energy balance over glaciers in the Southern Alps of New Zealand, contributing over half the energy available for ablation during large melt events. To calculate these terms confidently in glacier mass-balance models it is essential to use appropriate parameterizations for surface roughness and atmospheric stability. Eddy covariance measurements at Brewster Glacier were obtained over an ice surface to help facilitate an assessment of the calculation of the turbulent heat fluxes. The roughness length for momentum was found to be 3.6 x 10−3m, while the roughness lengths for temperature and humidity were two orders of magnitude smaller, in agreement with surface renewal theory. A Monte Carlo approach was used to assess the uncertainty in turbulent heat fluxes calculated using the bulk aerodynamic method. It was found that input-data and roughness-length uncertainty could not explain underestimates of observed sensible heat fluxes during periods with low wind speed and large temperature gradients. During these periods a katabatic wind speed maximum alters the formulation of the turbulent exchange coefficient to that typically observed in a neutral atmosphere and this has implications for glacier mass-balance sensitivity.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Constraining turbulent heat flux parameterization over a temperate maritime glacier in New Zealand
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Constraining turbulent heat flux parameterization over a temperate maritime glacier in New Zealand
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Constraining turbulent heat flux parameterization over a temperate maritime glacier in New Zealand
      Available formats



Hide All
Anderson, B and 6 others (2010) Climate sensitivity of a high-precipitation glacier in New Zealand. J. Glaciol., 56(195), 114128 (doi: 10.3189/002214310791190929)
Andreas, EL (1987) A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Bound.-Layer Meteorol., 38(1–2), 159184 (doi: 10.1007/BF00121562)
Bintanja, R and Van den Broeke, MR (1995) Momentum and scalar transfer coefficients over aerodynamically smooth Antarctic surfaces. Bound.-Layer Meteorol., 74(1–2), 89111 (doi: 10.1007/BF00715712)
Braithwaite, RJ (1995) Aerodynamic stability and turbulent sensible heat flux over a melting ice surface, the Greenland ice sheet. J. Glaciol., 41(139), 562571
Brun, E, Martin, E, Simon, V, Gendre, C and Coleou, C (1989) An energy and mass model of snow cover suitable for operational avalanche forecasting. J. Glaciol., 35(121), 333342
Buck, AL (1981) New equations for computing vapor pressure and enhancement factor. J. Appl. Meteorol., 20(12), 15271532 (doi: 10.1175/1520-0450(1981)020<1527:NEFCVP>)
Calanca, P (2001) A note on the roughness length for temperature over melting snow and ice. Q. J. R. Meteorol. Soc., 127(571), 255260 (doi: 10.1002/qj.49712757114)
Cullen, NJ, Molg, T, Kaser, G, Steffen, K and Hardy, DR (2007) Energy balance model validation on the top of Kilimanjaro, Tanzania, using eddy covariance data. Ann. Glaciol., 46, 227233 (doi: 10.3189/172756407782871224)
Dadic, R, Corripio, JG and Burlando, P (2008) Mass-balance estimates for Haut Glacier d’Arolla, Switzerland, from 2000 to 2006 using DEMs and distributed mass-balance modeling. Ann. Glaciol., 49, 2226 (doi: 10.3189/172756408787814816)
Denby, B and Greuell, W (2000) The use of bulk and profile methods for determining surface heat fluxes in the presence of glacier winds. J. Glaciol., 46(154), 445452 (doi: 10.3189/ 172756500781833124)
Denby, B and Smeets, P (2000) Derivation of turbulent flux profiles and roughness lengths from katabatic flow dynamics. J. Appl. Meteorol., 39(9), 16011612 (doi: 10.1175/15200450(2000)039.1601)
Dyer, AJ (1974) A review of flux-profile relationships. Bound.-Layer Meteorol., 7(3), 363372 (doi: 10.1007/BF00240838)
Foken, T (2008) Micrometeorology. Springer, Berlin
Gerbaux, M, Genthon, C, Etchevers, P, Vincent, C and Dedieu, JP (2005) Surface mass balance of glaciers in the French Alps: distributed modeling and sensitivity to climate change. J. Glaciol., 51(175), 561572 (doi: 10.3189/172756505781829133)
Giesen, RH, Van den Broeke, MR, Oerlemans, J and Andreassen, LM (2008) Surface energy balance in the ablation zone of Midtdalsbreen, a glacier in southern Norway: interannual variability and the effect of clouds. J. Geophys. Res., 113(D21), D21111 (doi: 10.1029/2008JD010390)
Giesen, RH, Andreassen, LM, Van den Broeke, MR and Oerlemans, J (2009) Comparison of the meteorology and surface energy balance at Storbreen and Midtdalsbreen, two glaciers in southern Norway. Cryosphere, 3(1), 5774
Gillett, S and Cullen, NJ (2011) Atmospheric controls on summer ablation over Brewster Glacier, New Zealand. Int. J. Climatol., 31(13), 20332048 (doi: 10.1002/joc.2216)
Greuell, W and Smeets, P (2001) Variations with elevation in the surface energy balance on the Pasterze (Austria). J. Geophys. Res., 106(D23), 3171731727 (doi: 10.1029/2001JD900127)
Hay, JE and Fitzharris, BB (1988a) The synoptic climatology of ablation on a New Zealand glacier. Int. J. Climatol., 8(2), 201215 (doi: 10.1002/joc.3370080207)
Hay, JE and Fitzharris, BB (1988b) A comparison of the energy-balance and bulk-aerodynamic approaches for estimating glacier melt. J. Glaciol., 34(117), 145153
Holtslag, AAM and de Bruin, HAR (1988) Applied modeling of the nighttime surface energy balance over land. J. Appl. Meteorol., 27(6), 689704 (doi: 10.1175/1520-0450(1988)027<0689: AMOTNS>2.0.CO;2)
Hulth, J, Rolstad, C, Trondsen, K and Wedøe Rødby, R (2010) Surface mass and energy balance of Sørbreen, Jan Mayen, 2008. Ann. Glaciol., 51(55), 110119 (doi: 10.3189/ 172756410791392754)
Ishikawa, N, Owens, IF and Sturman, AP (1992) Heat balance characteristics during fine periods on the lower part of the Franz Josef Glacier, South Westland, New Zealand. Int. J. Climatol., 12(4), 397410 (doi: 10.1002/joc.3370120407)
Kaimal, JC and Finnigan, JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, Oxford
Klok, EJ and Oerlemans, J (2002) Model study of the spatial distribution of the energy and mass balance of Morteratsch-gletscher, Switzerland. J. Glaciol., 48(163), 505518 (doi: 10.3189/172756502781831133)
Klok, EJ, Nolan, M and Van den Broeke, MR (2005) Analysis of meteorological data and the surface energy balance of McCall Glacier, Alaska, USA. J. Glaciol., 51(174), 451461 (doi: 10.3189/172756505781829241)
Machguth, H, Paul, F, >Hoelzle, M and Haeberli, W (2006) Distributed glacier mass-balance modelling as an important component of modern multi-level glacier monitoring. Ann. Glaciol., 43, 335343 (doi: 10.3189/172756406781812285)
Machguth, H, Purves, RS, Oerlemans, J, Hoelzle, M and Paul, F (2008) Exploring uncertainty in glacier mass-balance modelling with Monte Carlo simulation. Cryosphere, 2(2), 191204 (doi: 10.5194/tc-2-191-2008)
Marcus, MG, Moore, RD and Owens, IF (1985) Short-term estimates of surface energy transfers and ablation on the lower Franz Josef Glacier, South Westland, New Zealand. New Zeal. J. Geol. Geophys., 28(3), 559567 (doi: 10.1080/00288306.1985. 10421208)
Martin, E and Lejeune, Y (1998) Turbulent fluxes above the snow surface. Ann. Glaciol., 26, 179183
Molg, T, Cullen, NJ, Hardy, DR, Kaser, G and Klok, L (2008) Mass balance of a slope glacier on Kilimanjaro and its sensitivity to climate. Int. J. Climatol., 28, 881892 (doi: 10.1002/joc.1589)
Monin, AS and Obukhov, AM (1954) Osnovnie haraktristiki turbulentnogo peremeshivaniya v prizemnom sloe atmosferi [Main characteristics of turbulent mixing in atmospheric boundary layer]. Trudy Inst. Geofiz. (Akad. Nauk SSSR), 24, 163187
Monteith, JL (1957) Dew. Q. J. R. Meteorol. Soc. 83(357), 322341 (doi: 10.1002/qj.49708335706)
Munro, DS (1991) A surface energy exchange model of glacier melt and net mass balance. Int. J. Climatol., 11(6), 689700
Oerlemans, J (2000) Analysis of a 3 year meteorological record from the ablation zone of Morteratschgletscher, Switzerland: energy and mass balance. J. Glaciol., 46(155), 571579 (doi: 10.3189/ 172756500781832657)
Oerlemans, J and Grisogono, B (2002) Glacier winds and parameterization of the related surface heat fluxes. Tellus, 54A(5), 440452
Pellicciotti, F, Carenzo, M, Helbing, J, Rimkus, S and Burlando, P (2009) On the role of the subsurface heat conduction in glacier energy-balance modelling. Ann. Glaciol., 50(50), 1624 (doi: 10.3189/172756409787769555)
Schotanus, P, Nieuwstadt, FTM and Bruin, HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound.-Layer Meteorol., 26(1), 8193 (doi: 10.1007/BF00164332)
Smeets, CJPP and Van den Broeke, MR (2008) The parameterization of scalar transfer over rough ice. Bound.-Layer Meteorol., 128(3), 339355 (doi: 10.1007/s10546-008-9292-z)
Smeets, CJPP, Duynkerke, PG and Vugts, HF (1998) Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part 1 : A combination of katabatic and large-scale forcing. Bound.-Layer Meteorol., 87(1), 117145 (doi: 10.1023/ A:1000860406093)
Tanner, BD, Swiatek, E and Greene, JP (1993) Density fluctuations and use of the krypton hygrometer in surface flux measurements. In Proceedings of the 1993 National Conference on Irrigation and Drainage Engineering, Irrigation and Drainage Division, 21–23 July 1993, Park City, UT. American Society of Civil Engineers, New York, 945952 (ASCE Technical Note 4-93MP)
Van As, D (2011) Warming, glacier melt and surface energy budget from weather station observations in the Melville Bay region of northwest Greenland. J. Glaciol., 57(202), 208220 (doi: 10.3189/002214311796405898)
Van den Broeke, M (1996) Characteristics of the lower ablation zone of the West Greenland ice sheet for energy-balance modelling. Ann. Glaciol., 23, 160166
Van den Broeke, MR (1997) Momentum, heat and moisture budgets of the katabatic wind layer over a large mid-latitude glacier in summer. J. Appl. Meteorol., 36(6), 763774 (doi: 10.1175/1520–0450(1997)036<0763:MHAMBO> 2.0.CO;2)
Van den Broeke, MR, Van As, D, Reijmer, C and Van de Wal, R (2004) Assessing and improving the quality of unattended radiation observations in Antarctica. J. Atmos. Oceanic Technol., 21(9), 14171431
Van den Broeke, MR, Van As, D, Reijmer, C and Van de Wal, R (2005) Sensible heat exchange at the Antarctic snow surface: a study with automatic weather stations. Int. J. Climatol., 25(8), 10811101 (doi: 10.1002/joc.1152)
Wagnon, P, Sicart, JE, Berthier, E and Chazarin, JP (2003) Wintertime high-altitude surface energy balance of a Bolivian glacier, Illimani, 6340 m above sea level. J. Geophys. Res., 108(D6), 4177 (doi: 10.1029/2002JD002088)
Webb, EK, Pearman, GI and Leuning, R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q. J. R. Meteorol. Soc., 106(447), 85100 (doi: 10.1002/ qj.49710644707)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed