Skip to main content Accessibility help

Comparison of elastic moduli from seismic diving-wave and ice-core microstructure analysis in Antarctic polar firn

  • Rebecca Schlegel (a1), Anja Diez (a2), Henning Löwe (a3), Christoph Mayer (a4), Astrid Lambrecht (a4), Johannes Freitag (a1), Heinrich Miller (a1), Coen Hofstede (a1) and Olaf Eisen (a1) (a5)...


We compared elastic moduli in polar firn derived from diving wave refraction seismic velocity analysis, firn-core density measurements and microstructure modelling based on firn-core data. The seismic data were obtained with a small electrodynamic vibrator source near Kohnen Station, East Antarctica. The analysis of diving waves resulted in velocity–depth profiles for different wave types (P-, SH- and SV-waves). Dynamic elastic moduli of firn were derived by combining P- and S-wave velocities and densities obtained from firn-core measurements. The structural finite-element method (FEM) was used to calculate the components of the elastic tensor from firn microstructure derived from X-ray tomography of firn-core samples at depths of 10, 42, 71 and 99 m, providing static elastic moduli. Shear and bulk moduli range from 0.39 to 2.42 GPa and 0.68 to 2.42 GPa, respectively. The elastic moduli from seismic observations and the structural FEM agree within 8.5% for the deepest achieved values at a depth of 71 m, and are within the uncertainty range. Our observations demonstrate that the elastic moduli of the firn can be consistently obtained from two independent methods which are based on dynamic (seismic) and static (tomography and FEM) observations, respectively, for deeper layers in the firn below ~10 m depth.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Comparison of elastic moduli from seismic diving-wave and ice-core microstructure analysis in Antarctic polar firn
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Comparison of elastic moduli from seismic diving-wave and ice-core microstructure analysis in Antarctic polar firn
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Comparison of elastic moduli from seismic diving-wave and ice-core microstructure analysis in Antarctic polar firn
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.


Hide All

Present address: Swansea University, UK.



Hide All
Arthern, R J, Corr, H F, Gillet-Chaulet, F, Hawley, R L and Morris, E M (2013) Inversion for the density-depth profile of polar firn using a stepped-frequency radar. J. Geophys. Res. Earth. Surf., 118(3), 12571263, ISSN (doi: 10.1002/jgrf.20089)
Backus, G E (1962) Long-wave elastic attenuation produced by horizontal layering. J. Geophys. Res., 67(11), 44274440, ISSN (doi: 10.1190/tle33060634.1)
Bale, R and 5 others (2009) Shear wave splitting applications for fracture analysis and improved imaging: some onshore examples. First Break, 27(9), 7383, ISSN (doi: 10.1190/1.9781560803362)
Brotons, V, Tomás, R, Ivorra, S and Grediaga, A (2014) Relationship between static and dynamic elastic modulus of calcarenite heated at different temperatures: the San Julián's stone. Bull. Eng. Geol. Environ, 73(3), 791799, ISSN (doi: 10.1007/s10064-014-0583-y)
Brotons, V and 6 others (2016) Improved correlation between the static and dynamic elastic modulus of different types of rocks. Mater. Struct. /Materiaux et Constructions, 49(8), 30213037, ISSN (doi: 10.1617/s11527-015-0702-7)
Ciccotti, M and Mulargia, F (2004) Differences between static and dynamic elastic moduli of a typical seismogenic rock. Geophys. J. Int., 157(1), 474477, ISSN (doi: 10.1111/j.1365-246X.2004.02213.x)
Cuffey, K and Paterson, WSB (2010) The physics of glaciers, 4th edn Butterworth-Heinemann, Oxford, ISBN 9780123694614 (doi: 10.1016/0016-7185(71)90086-8)
Diez, A and Eisen, O (2015) Seismic wave propagation in anisotropic ice – Part 1: Elasticity tensor and derived quantities from ice-core properties. Cryosphere, 9(1), 367384, ISSN (doi: 10.5194/tc-9-367-2015)
Diez, A, Eisen, O, Hofstede, C, Bohleber, P and Polom, U (2013) Joint interpretation of explosive and vibroseismic surveys on cold firn for the investigation of ice properties. Ann. Glaciol., 54(64), 201210, ISSN (doi: 10.3189/2013AoG64A200)
Diez, A and 7 others (2014) Influence of ice crystal anisotropy on seismic velocity analysis. Ann. Glaciol., 55(67), 97106, ISSN (doi: 10.3189/2014AoG67A002)
Diez, A and 8 others (2015) Seismic wave propagation in anisotropic ice – Part 2: Effects of crystal anisotropy in geophysical data. Cryosphere, 9(1), 385398, ISSN (doi: 10.5194/tc-9-385-2015)
Diez, A and 8 others (2016) Ice shelf structure derived from dispersion curve analysis of ambient seismic noise, Ross Ice Shelf, Antarctica. Geophys. J. Int., 205(2), 785795, ISSN (doi: 10.1093/gji/ggw036)
Dowdeswell, J A and Evans, S (2004) Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding. Rep. Prog. Phys., 67(10), 18211861, ISSN (doi: 10.1088/0034-4885/67/10/R03)
Eisen, O, Rack, W, Nixdorf, U and Wilhelms, F (2005) Characteristics of accumulation around the EPICA deep-drilling site in Dronning Maud Land, Antarctica. Ann. Glaciol. 41, 4146, ISSN (doi: 10.3189/172756405781813276)
Farrell, RC and Euwema, RN (1984) Surface consistent decomposition of refraction raypaths. In SEG Technical Program Expanded Abstracts 1984,4, 424425, Society of Exploration Geophysicists, Tulsa, USA (doi: 10.1190/1.1893974)
Fjær, E (2009) Static and dynamic moduli of a weak sandstone. GEOPHYSICS, 74(2), WA103–WA112, ISSN (doi: 10.1190/1.3052113)
Freitag, J, Wilhelms, F and Kipfstuhl, S (2004) Microstructure-dependent densification of polar firn derived from X-ray microtomography. J. Glaciol., 50(169), 243250, ISSN (doi: 10.3189/172756504781830123)
Freitag, J, Kipfstuhl, S and Laepple, T (2013) Core-scale radioscopic imaging: A new method reveals density-calcium link in Antarctic firn. J. Glaciol., 59(218), 10091014, ISSN (doi: 10.3189/2013JoG13J028)
Fujita, S, Okuyama, J, Hori, A and Hondoh, T (2009) Metamorphism of stratified firn at Dome Fuji, Antarctica: a mechanism for local insolation modulation of gas transport conditions during bubble close off. J. Geophys. Res. Solid. Earth., 114(3), 121, ISSN (doi: 10.1029/2008JF001143)
Garboczi, E (1998) Finite element and finite difference programs for computing the linear electric and elastic properties of digital images of random materials. Rep 6269. Technical report, NISTIR 6268, National Institute for Standards and Technology, U.S. Department of Commerce.
Gascon, G and 6 others (2014) How well is firn densification represented by a physically based multilayer model? Model evaluation for Devon Ice Cap, Nunavut, Canada. J. Glaciol., 60(222), 694704, ISSN (doi: 10.3189/2014JoG13J209)
Gerling, B (2016) Determination of the elastic modulus of snow by acoustic methods and comparison to penetrometer measurements and numerical simulations. Unpublished master thesis, Ludwig Maximilian University, Munich, Germany.
Gerling, B, Löwe, H and van Herwijnen, A (2017) Measuring the Elastic Modulus of Snow. Geophys. Res. Lett., 44, ISSN (doi: 10.1002/2017GL075110)
Grove, JM and Gresswell, RK (1958) Glaciers and glaciation,124, ISBN 9780340905791 (doi: 10.2307/1790982)
Heap, M J, Faulkner, D R, Meredith, P G and Vinciguerra, S (2010) Elastic moduli evolution and accompanying stress changes with increasing crack damage: implications for stress changes around fault zones and volcanoes during deformation. Geophys. J. Int., 183(1), 225236, ISSN (doi: 10.1111/j.1365-246X.2010.04726.x)
Herglotz, G (1907) Über das Benndorfsche Problem der Fortpflanzungsgeschwindigkeit der Erdbebenstrahlen. Zeitschrift für Geophysik, 8, 145147
Hofstede, C and 6 others (2013) Investigating englacial reflections with vibro-and explosive-seismic surveys at Halvfarryggen ice dome, Antarctica. Ann. Glaciol., 54(64), 189200, ISSN (doi: 10.3189/2013AoG64A064)
Horgan, H J and 6 others (2008) Complex fabric development revealed by englacial seismic reflectivity: Jakobshavn Isbræ, Greenland. Geophys. Res. Lett., 35(10), 16, ISSN (doi: 10.1029/2008GL033712)
Hörhold, MW, Kipfstuhl, S, Wilhelms, F, Freitag, J and Frenzel, A (2011) The densification of layered polar firn. J. Geophys. Res. Earth. Surf., 116(1), 115, ISSN (doi: 10.1029/2009JF001630)
Ide, J M (1936) Comparison of statically and dynamically determined Young's modulus of rocks. Proc. Natl. Acad. Sci. USA., 22(2), 8192, ISSN (Print)
Kirchner, J F and Bentley, C R (1979) Seismic short-refraction studies on the Ross Ice Shelf, Antarctica. J. Glaciol., 24(90), 313319
Kirchner, J F and Bentley, C R (1990) RIGGS III: seismic short-refraction studies using an analytical curve-fitting technique. The Ross Ice Shelf: Glaciol. Geophys., American Geophysical Union, Washington, DC, 42(5), 109126 (doi: 10.1029/AR042p0109)
Köchle, B and Schneebeli, M (2014) Three-dimensional microstructure and numerical calculation of elastic properties of alpine snow with a focus on weak layers. J. Glaciol., 60(222), 705713, ISSN (doi: 10.3189/2014JoG13J220)
Kohnen, H (1972) Über die Beziehung zwischen seismischen Geschwindigkeiten und der Dichte in Firn und Eis. Zeitschrift für Geophysik, 38(5), 925935
Kohnen, H and Bentley, CR (1973) Seismoglaziologische Untersuchungen nahe Byrd Station, Antarktis. Archiv für Meteorologie, Geophysik und Bioklimatologie Serie A, 22(2–3), 311324, ISSN (doi: 10.1007/BF02247550)
Kolesnikov, Y I (2009) Dispersion effect of velocities on the evaluation of material elasticity. J. Min. Sci., 45(4), 347354, ISSN (doi: 10.1007/s10913-009-0043-4)
Leinss, S and 5 others (2016) Anisotropy of seasonal snow measured by polarimetric phase differences in radar time series. Cryosphere, 10(4), 17711797, ISSN (doi: 10.5194/tc-10-1771-2016)
Löwe, H, Riche, F and Schneebeli, M (2013) A general treatment of snow microstructure exemplified by an improved relation for thermal conductivity. Cryosphere, 7(5), 14731480, ISSN (doi: 10.5194/tc-7-1473-2013)
Mapcarta (2018) Kohnen Station.
Marion, DP and Coudin, P (1992) Fram ray to effective medium theories in stratified media: An experimental study. In SEG Technical Program Expanded Abstracts 1992, 13411343, Society of Exploration Geophysicists, Tulsa, USA (doi: 10.1190/1.1821989)
Martínez-Martínez, J, Benavente, D and García-del Cura, MA (2012) Comparison of the static and dynamic elastic modulus in carbonate rocks. Bull. Eng. Geol. Environ, 71(2), 263268, ISSN (doi: 10.1007/s10064-011-0399-y)
McClung, DM (1981) Fracture mechanical models of dry slab avalanche release. J. Geophys. Res. Solid. Earth., 86(B11), 1078310790, ISSN (doi: 10.1029/JB086iB11p10783)
Montagnat, M and 9 others (2014) Fabric along the NEEM ice core, Greenland, and its comparison with GRIP and NGRIP ice cores. Cryosphere, 8(4), 11291138, ISSN (doi: 10.5194/tc-8-1129-2014)
Nowack, R L (1990) Tomography and the Herglotz-Wiechert inverse formulation. Pure and Appl. Geophy. PAGEOPH, 133(2), 305315, ISSN (doi: 10.1007/BF00877165)
Oerter, H and 6 others (2000) Accumulation rates in Dronning Maud Land, Antarctica, as revealed by dielectric-profiling measurements of shallow firn cores. Ann. Glaciol., 30, 2734, ISSN (doi: 10.3189/172756400781820705)
Oerter, H, Druecker, C, Kipfstuhl, S and Wilhelms, F (2009) Kohnen Station – The drilling camp for the EPICA deep ice core in Dronning Maud Land. Polarforschung, 78(1–2), 123, ISSN
Petrenko, VF and Whitworth, RW (2002) Physics of Ice. Oxford University Press, Oxford, UK, ISBN 9780198518945 (doi: 10.1093/acprof:oso/9780198518945.001.0001)
Picotti, S, Vuan, A, Carcione, J M, Horgan, H J and Anandakrishnan, S (2015) Anisotropy and crystalline fabric of Whillans Ice Stream (West Antarctica) inferred from multicomponent seismic data. J. Geophys. Res. B: Solid. Earth., 120(6), 42374262, ISSN (doi: 10.1002/2014JB011591)
Pritchard, H D, Luthcke, S B and Fleming, A H (2010) Understanding ice-sheet mass balance: progress in satellite altimetry and gravimetry. J. Glaciol., 56(200), 11511161, ISSN (doi: 10.3189/002214311796406194)
Schaller, C F, Freitag, J and Eisen, O (2017) Critical porosity of gas enclosure in polar firn independent of climate. Climate of the Past, 13, 16851693. (doi: 10.5194/cp-13-1685-2017)
Schneebeli, M (2004) Numerical simulation of elastic stress in the microstructure of snow. Ann. Glaciol., 38, 339342, ISSN (doi: 10.3189/172756404781815284)
Schulson, EM and Duval, P (2009) Creep and fracture of ice, 1 edn. Cambridge University Press, Cambridge, UK, ISBN 0521806208 (doi: 10.1017/CBO9780511581397)
Schweizer, J (1999) Review of dry snow slab avalanche release. Cold. Reg. Sci. Technol., 30(1–3), 4357, ISSN (doi: 10.1016/S0165-232X(99)00025-7)
Schweizer, J (2003) Snow avalanche formation. Rev. Geophys., 41(4), 1016, ISSN (doi: 10.1029/2002RG000123)
Slichter, L B (1932) The theory of the interpretation of seismic travel-time curves in horizontal structures. J. Appl. Phys., 3(6), 273295, ISSN (doi: 10.1063/1.1745133)
Srivastava, P K, Chandel, C, Mahajan, P and Pankaj, P (2016) Prediction of anisotropic elastic properties of snow from its microstructure. Cold. Reg. Sci. Technol., 125, 85100, ISSN (doi: 10.1016/j.coldregions.2016.02.002)
Thomsen, L (1986) Weak elastic anisotropy. Geophysics, 51(10), 19541966, ISSN (doi: 10.1190/1.1442051)
Torquato, S (2002) Random heterogeneous materials, volume 16 of Interdisciplinary Applied Mathematics. Springer, New York, New York, NY, ISBN 978-1-4757-6357-7 (doi: 10.1007/978-1-4757-6355-3)
Tsvankin, I (1997) Anisotropic parameters and P-wave velocity for orthorhombic media. Geophysics, 62(4), 1292, ISSN (doi: 10.1190/1.1444231).
Van Herwijnen, A and 5 others (2016) Estimating the effective elastic modulus and specific fracture energy of snowpack layers from field experiments. J. Glaciol., 62(236), 9971007, ISSN (doi: 10.1017/jog.2016.90)
Wautier, A, Geindreau, C and Flin, F (2015) Linking snow microstructure to its macroscopic elastic stiffness tensor: a numerical homogenization method and its application to 3-D images from X-ray tomography. Geophys. Res. Lett., 42(19), 80318041, ISSN (doi: 10.1002/2015GL065227)
Weiler, K (2008) On the Composition of Firn Air and its Dependence on Seasonally Varying Atmospheric Boundary Conditions and the Firn Structure. Ph.D. thesis, University of Bern.
Wendt, S (2002) New Manual of Seismological Observatory Practice. In Bormann, P ed., Seismic signals and noise,1, chapter chapter, 4–9, GFZpublic Deutsches GeoForschungsZentrum GFZ, IASPEI, GFZ German Research Centre for Geosciences, Potsdam, ISBN 9783980878005 (doi: 10.2312/GFZ.NMSOP)
Wesche, C, Elsen, O, Oerter, H, Schulte, D and Steinhage, D (2007) Surface topography and ice flow in the vicinity of the EDML deep-drilling site, Antarctica. J. Glaciol., 53(182), 442448, ISSN (doi: 10.3189/002214307783258512)
Wiechert, E (1910) Bestimmung des Weges von Erdbebenwellen im Erdinneren. Physicalische Zeitschrift, 11, 294311
Wingham, D, Shepherd, A, Muir, A and Marshall, G (2006) Mass balance of the Antarctic ice sheet. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 364(1844), 16271635, ISSN (doi: 10.1098/rsta.2006.1792)
Xu, S, Stovas, A and Alkhalifah, T (2016) Estimation of the anisotropy parameters from imaging moveout of diving wave in a factorized anisotropic medium. Geophysics, 81(4), C139C150, ISSN (doi: 10.1190/geo2015-0600.1)
Yilmaz, Ö (2001) Seismic data analysis,10, ISBN 978-1-56080-094-1 (doi: 10.1190/1.9781560801580)


Related content

Powered by UNSILO

Comparison of elastic moduli from seismic diving-wave and ice-core microstructure analysis in Antarctic polar firn

  • Rebecca Schlegel (a1), Anja Diez (a2), Henning Löwe (a3), Christoph Mayer (a4), Astrid Lambrecht (a4), Johannes Freitag (a1), Heinrich Miller (a1), Coen Hofstede (a1) and Olaf Eisen (a1) (a5)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.