Skip to main content Accessibility help
×
Home

Comparing methods of measuring sea-ice density in the East Antarctic

  • Jennifer K. Hutchings (a1), Petra Heil (a2) (a3), Oliver Lecomte (a4), Roger Stevens (a3), Adam Steer (a2) and Jan L. Lieser (a3)...

Abstract

Remotely sensed derivation of sea-ice thickness requires sea·ice density. Sea-ice density was estimated with three techniques during the second Sea Ice Physics and Ecosystem eXperimett (SIPEX-II, September-November 2012, East Antarctica). The sea ice was first-year highly deformed, mean thicknsss 1.2 m with layers, consistent with rafting, and 6-7/10 columnar ice and 3/10 granular ice. Ice density was found to be lower than values (900-920 kg m−3 used previously to derive ice thickness,, with columnar ice mean density of 870 kg m− 3. At two different ice stations the mean density of the ice was 800 kg m–3, the lower density reflecting a high percentage of porous granular ice at the second station. Error estimates for mass/volume and liquid/solid water methods are presented. With 0.1 m long, 0.1 m core samples, the error on individual density estimates is 28 kg m-3. Errors are larger for smaller machined blocks. Errors increase to 46 kg m-3 if the liquid/solid volume method is used. The mass/vouume method has a low bias due to brine drainage of at least 5%. Bulk densities estimated from ice and snow measurements along 100 m transects were high, and likely unrealistic as the assumption of isostatcc balance is not suitable over these length scales in deformed ice.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Comparing methods of measuring sea-ice density in the East Antarctic
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Comparing methods of measuring sea-ice density in the East Antarctic
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Comparing methods of measuring sea-ice density in the East Antarctic
      Available formats
      ×

Copyright

References

Hide All
Buynitskiy, VK (1967) Structure, principal properties, and strength of Antarctic sea ice. Sov. Antarcl. Exped. Inf: Bull., 6(6), 504510
Cox, GFN and Weeks, WF (1983) Equations for determining the gas and brine volumes in sea-ice samples. ;. Glaciol 29(102), 306316
Doble, M, Skouroup, H, Wadhams Pand Geiger CA (2011)The relation between Arctic sea ice surface elevation and draft: a case study using coincident AUV sonar and airborne scanning laser. /. Geophys. Res., 116(C8), C00EO3 (doi: 10.1029/ 2011)C007076)
Feistel, R and 9 others (2010)Numerical implementation and Oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air - Part 1: background and equations. Ocean Sci, 6(3), 633-677 (doi: 10.5194/OS-6-633-2010)
Fofonoff, NP (1985) Physical properties of seawater: a new salinity scale and equation of state for seawater.. J. Geophys. Res., 90, (C2), 33323342 (doi: 10.1029/JC090iC02p03332)
Giles, KA Laxon, SW and Worby, AP (2008) Antarctic sea ice elevation from satellite radar altimetry. Geophys. Res. Lett., 35 (3), L03503 (doi: 10.1029/2007GL031572)
Kurtz, NT and Markus, T (2012)Satellite observations of Antarctic sea ice thickness and volume. j. Geophys. Res., 117(C8), C08025 (doi: 10.1029/2012jC008141)
Kwok, R and Cunningham GF (2008)ICESat over Arctic sea ice: estimation of snow depth and ice thickness. . . Geophys. Res., 113(C8), C08010 (doi: 10.1029/2008JC004753)
Price, D, Rack, W, Haas, C, Langhorne, P) and Marsh 0 &013) Sea fee freeboard in McMurdo Sound, Antarctica, derived by surface-validated ICESat laser altimeter data. J. Geophys. Res., 118(7,, 3634-3650 (doi: 10.1 002/jgrc.20266)
Price, D, Rack, W, langhorne, P], Haas, C, leonard, G and Barnsdale, K (2014) The sub-ice platelet layer and its influence on freeboard to thickness conversion of Antarctic sea ice.. Cryos. Discuss,, 8, (1), 9991022 (doi: 10.5194/tcd-8-999-2014)
Sinha, NK (1984) Uniaxial compressive strength of first-year and multi-year sea ice. Can. j . Civil Eng, 11(1), 82-91
Timco, GW and Frederking, RMW (1996) A review of sea ice density. Cold Reg. Sci. Technol, 24(1), 1-6 (doi: 10.1016/0165-232X (95)00007-X)
Timco, GW and Weeks, WF (2010) A review of the engineering properties of sea ice. Cold Reg. Sci. Technol, 60(2), 107-129 (doi: 10.10UVj.coldregions.2009.10.003)
Urabe, N and Inoue, M (1986) Mechanical properties of Antarctic Sea ice. In Chung )S ed. Proceedings of the 5th International Offshore Mechanics and Arctic Engineering (OMAE) Symposium, 13-18 April 1986, Tokyo, Japan, Vol. 4. American Society of Mechanical Engineers, New York
Worby, AP Geiger, CA Paget Mj, Van Woert, ML Ackley SF and DeLiberty Tl (2008)Thickness distribution of Antarctic sea ice. J. Geophys. Res., 113(C5), C05S92 (doi: 10.1029/ 2007jC004254)
Wright, DG and 9 others (2010)Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air - Part 2: the library routines. Ocean Sci., 6(3), 695-718 (doi: 10.5194/ os-6-695-2010)
Xie, H, Tekeli, AE Ackley, SF Vi 0 and Zwally HJ (2012) Sea ice thickness estimations from ICESat altimetry over the Bellingshausen and Amundsen Seas, 2003-2009. j. Geophys. Res., 118 (5), 2438-2453 (doi: 10.1002/jgrc.20179)
Zwally, Hj, Yi, D, Kwok, R and Zhao, Y (2008) ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. / Geophys. Res., 113(C2), C02S15 (doi: 10.1029/2007JC004284)

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed