Skip to main content Accessibility help
×
Home

Chlorinity/salinity distribution patterns in experimental granular sea ice

  • J.-L. Tison (a1) and V. Verbeke (a1)

Abstract

This work investigates the possibility of brine-channel formation and development during the freezing of granular ice from a loose frazil-ice suspension in an NaCl solution at set-water concentration. Three experiments were performed at various constant growth rates in a purpose-built vessel with computer-controlled thermal driving. High-resolution chlorinity measurements are used as a proxy for the bulk salinity of the samples. These show clear brine-segregation processes in the ice, with very high salinity gradients for the fast (10 mm h−1) to medium (2 mm h−1) freezing rates, provided that a suitable sampling scale is adopted. Weak segregation was found at the low freezing rate (0.5 mm h−1). The spatial distribution of the bulk salinity fits the visual appearance of brine channels in the ice adequately, in both horizontal and vertical sections. In a similar way to columnar-congelation sea ice, the number of brine channels significantly decreases with growth rate, but the density of channels is systematically lower in the granular ice than that found at equivalent freezing rates in the columnar ice. This is attributed to the lower geometrical constraints on brine transport in the granular medium. Contrasts between brine-channel geometry and density at different growth rates are discussed in light of the "mushy-layer" concept adapted to sea-ice growth from the solidification of alloys

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Chlorinity/salinity distribution patterns in experimental granular sea ice
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Chlorinity/salinity distribution patterns in experimental granular sea ice
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Chlorinity/salinity distribution patterns in experimental granular sea ice
      Available formats
      ×

Copyright

References

Hide All
Bennington, K. O. 1967. Desalination features in natural sea ice. J. Glaciol., 6(48), 845−857.
Cottier, F. R. 1999. Brine distribution in young sea ice. (Ph.D. thesis, University of Cambridge.)
Cottier, F. R., Eicken, H. and Wadhams, P.. 1999. Linkages between salinity and brine channel distribution in young sea ice. J. Geophys. Res., 104(C7), 15,859−15,871
Cox, G. F. N. and Weeks, W. F.. 1988. Numerical simulations of the profile properties of undeformed first-year sea ice during the growth season. J. Geophys. Res., 93(C10), 12,449−12,460.
Criminale, W. O. Jr and Lelong, M.-E 1984. Optimum expulsion of brine from sea ice. J. Geophys. Res., 89(C3), 3581−3585.
Eicken, H. 1998. Deriving modes and rates of ice growth in the Weddell Sea from microstructural, salinity and stable-isotope data, In Jeffries, M. O., el Antarctic sea tee: physical processes, interactions and variability. Washington, DC, American Geophysical Union, 89−122. (Antarctic Research Series 74.)
Eide, L. I. and Martin, S.. 1975. The formation of brine drainage features in young sea ice. J. Glaciol., 14(70), 137−154.
Grae Worster, M. 1992a. The dynamics of mushy layers. In Davis, H. E. H. S. H., Muller, U. and Grae Worster, M., eds. Interactive dynamics ofconvection and solidification. Dordrecht, etc., Kluwer, 113−138.
GraeWorster, M. 1992b. Instabilities of the liquid and mushy regions during solidification of alloys. J. Fluid Meek, 237, 649−669.
Kawamura, T. 1988. Experimental study on distribution of brine drainage channels in sea ice. In Saeki, H. and Hirayama, K.-i, eds. IAHR88, 9th IAHR International Symposium on Ice, 23−27 August 1988, Sapporo, Japan. Proceedings. Sapporo, International Association for Hydraulic Research. Committee on Ice Problems, 219−228.
Lake, R. A. and Lewis, E. L.. 1970. Salt rejection by sea ice during growth. J. Geophys. Res., 75(3), 583−597
Langway, C. G. Jr. 1958. Ice fabrics and the universal stage. SIPRE Tech. rep 62.
Meese, D A. 1989. The chemical and structural properties of sea ice in the southern Beaufort Sea. CRREL Rep 89−25.
Nakawo, M. and Sinha, N. K.. 1981. Growth rate and salinity profile of first-year sea ice in the High Arctic. J. Glaciol, 27(96), 315−330.
Niedrauer, T. M. and Martin, S.. 1979. An experimental study of brine drainage and convection in young sea ice. J. Geophys. Res., 84(C3), 1176−1186.
Saito, T. and Ono, N.. 1980. Percolation of sea ice. II. Brine drainage channels in young sea ice. Low Temp. Sci., Ser. A, 39,127−132.
Wakatsuchi, M. and Kawamura, T.. 1987. Formation processes ofbrine drainage channels in sea ice. J. Geophys. Res., 92 (C7), 7195−7197
Wakatsuchi, M. and Saito, T. 1985. On brine drainage channels of young sea ice. Ann. Glaciol., 6, 200−202.
Weissenberger, J., Dieckmann, G., Gradinger, R. and Spindler, M.. 1992. Sea ice: a cast technique to examine and analyze brine pockets and channel structure. Limnol. Oceanogr., 37(1), 179−183.
Wettlaufer, J. S., Grae Worster, M. and Huppert, H. E.. 1997a. Natural convection during solidification of an alloy from above with application to the evolution of sea ice. J. Fluid Mech., 344, 291−316.
Wettlaufer, J. S., Grae Worster, M. and Huppert, H. E.. 1997b. The phase evolution of young sea ice. Geophys. Res. Lett., 24(10), 1251−1254.

Chlorinity/salinity distribution patterns in experimental granular sea ice

  • J.-L. Tison (a1) and V. Verbeke (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed