Skip to main content Accessibility help
×
Home

Characterization of glacial silt and clay using automated mineralogy

  • Jeff W. Crompton (a1), Gwenn E. Flowers (a1) and Brendan Dyck (a1)

Abstract

Glacial erosion produces vast quantities of fine-grained sediment that has a far-reaching impact on Earth surface processes. To gain a better understanding of the production of glacial silt and clay, we use automated mineralogy to quantify the microstructure and mineralogy of rock and sediment samples from 20 basins in the St. Elias Mountains, Yukon, Canada. Sediments were collected from proglacial streams, while rock samples were collected from ice marginal outcrops and fragmented using electrical pulse disaggregation. For both rock fragments and sediments, we observe a log-normal distribution of grain sizes and a sub-micrometer terminal grain size. We find that the abrasion of silt and clay results in both rounding and the exploitation of through-going fractures. The abundance of inter- versus intragranular fractures depends on mineralogy and size. Unlike the relatively larger grains, where crushing and abrasion are thought to exploit and produce discrete populations of grain sizes, the comminution of fines leads to a grain size, composition and rounding that is continuously distributed across size, and highly dependent on source-rock properties.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Characterization of glacial silt and clay using automated mineralogy
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Characterization of glacial silt and clay using automated mineralogy
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Characterization of glacial silt and clay using automated mineralogy
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Jeff Crompton, E-mail: jcrompto@sfu.ca

References

Hide All
Altuhafi, F and Baudet, BA (2011) A hypothesis on the relative roles of crushing and abrasion in the mechanical genesis of a glacial sediment. Engineering Geology 120(1-4), 19. doi:10.1016/j.enggeo.2011.03.002
Anders, MH, Laubach, SE and Scholz, CH (2014) Microfractures: a review. Journal of Structural Geology 69, 377394. doi:10.1016/j.jsg.2014.05.011
Anders, MH and Wiltschko, DV (1994) Microfracturing, paleostress and the growth of faults. Journal of Structural Geology 16(6), 795815. doi:10.1016/0191-8141(94)90146-5
Andres, U, Jirestig, J and Timoshkin, I (1999) Liberation of minerals by high-voltage electrical pulses. Powder Technology 104(1), 3749.
Assallay, AM, Rogers, CDF, Smalley, IJ and Jefferson, IF (1998) Silt: 2–62 μm, 9–4φ. Earth-Science Reviews 45(1), 6188. doi:10.1016/S0012-8252(98)00035-X
Atkinson, BK (1984) Subcritical crack growth in geological materials. Journal of Geophysical Research: Solid Earth 89(B6), 40774114. doi:10.1029/JB089iB06p04077
Bandini, A, Berry, P, Bemporad, E, Sebastiani, M and Chicot, D (2014) Role of grain boundaries and micro-defects on the mechanical response of a crystalline rock at multiscale. International Journal of Rock Mechanics and Mining Sciences 71, 429441. doi:10.1016/j.ijrmms.2014.07.015
Beckingham, LE, and 9 others (2016) Evaluation of mineral reactive surface area estimates for prediction of reactivity of a multi-mineral sediment. Geochimica et Cosmochimica Acta 188, 310329. doi:10.1016/j.gca.2016.05.040
Benn, DI and Gemmell, AMD (2002) Fractal dimensions of diamictic particle-size distributions: simulations and evaluation. Geological Society of America Bulletin 114(5), 528532. doi:10.1130/0016-7606(2002)114<0528:FDODPS>2.0.CO;2
Berger, AL, and 6 others (2008) Architecture, kinematics, and exhumation of a convergent orogenic wedge: a thermochronological investigation of tectonic–climatic interactions within the central St. Elias orogen, Alaska. Earth and Planetary Science Letters 270(1), 1324. doi:10.1016/j.epsl.2008.02.034
Bjørk, TE, Mair, K and Austrheim, H (2009) Quantifying granular material and deformation: advantages of combining grain size, shape, and mineral phase recognition analysis. Journal of Structural Geology 31(7), 637653. doi:10.1016/j.jsg.2009.03.020
Boulton, GS (1978) Boulder shapes and grain-size distributions of debris as indicators of transport paths through a glacier and till genesis. Sedimentology 25(6), 773799. doi:10.1111/j.1365-3091.1978.tb00329.x
Broz, ME, Cook, RF and Whitney, DL (2006) Microhardness, toughness, and modulus of Mohs scale minerals. American Mineralogist 91(1), 135142. doi:10.2138/am.2006.1844
Buller, AT and McManus, J (1973) The quartile-deviation/median-diameter relationships of glacial deposits. Sedimentary Geology 10(2), 135146. doi:10.1016/0037-0738(73)90003-1
Cammeraat, E and Rappol, M (1987) On the relationship of bedrock lithology and grain size distribution of till in Western Allgäu (West Germany) and Vorarlberg (Austria). Jahrbuch der Geologischen Bundesanstalt (Vienna) 130, 383389.
Campbell, RB and Dodds, CJ (1978) Operation Saint Elias, Yukon Territory. Geological Survey of Canada Paper, Paper 75-1, Part A, 51–53.
Chanudet, V and Fillela, M (2006) Particle size and mineralogical composition of inorganic colloids in glacier-melting water and overlying ice in an Alpine glacier, Oberaargletscher, Switzerland. Journal of Glaciology 52(178), 473474. doi:10.3189/172756506781828485
Chaolu, Y (1997) Subglacial comminution in till – evidence from microfabric studies and grain-size distributions. Journal of Glaciology 43(145), 473479. doi:10.3189/S0022143000035073
Cobbett, R, Israel, S, Mortensen, J, Joyce, N and Crowley, J (2017) Structure and kinematic evolution of the Duke River fault, southwestern Yukon. Canadian Journal of Earth Sciences 54(3), 322344. doi:10.1139/cjes-2016-0074
Crompton, JW and Flowers, GE (2016) Correlations of suspended sediment size with bedrock lithology and glacier dynamics. Annals of Glaciology 57(72), 142150. doi:10.1017/aog.2016.6
Crompton, JW, Flowers, GE, Kirste, D, Hagedorn, B and Sharp, MJ (2015) Clay mineral precipitation and low silica in glacier meltwaters explored through reaction-path modelling. Journal of Glaciology 61(230), 10611078. doi:10.3189/2015JoG15J051
Crompton, JW, Flowers, GE and Stead, D (2018) Bedrock fracture characteristics as a possible control on the distribution of surge-type glaciers. Journal of Geophysical Research: Earth Surface 123(5), 853873. doi:10.1002/2017JF004505
Davis, JC and Sampson, RJ (2002) Statistics and Data Analysis in Geology, 3rd Edn.Wiley, New York.
Dodds, CJ and Campbell, RB (1988) Potassium-Argon Ages of Mainly Intrusive Rocks in the Saint Elias Mountains, Yukon and British Columbia. Geological Survey of Canada, Paper 87–16.
Dowdeswell, JA (1982) Scanning electron micrographs of quartz sand grains from cold environments examined using Fourier shape analysis. Journal of Sedimentary Research 52(4), 13151323. doi:10.1306/212F812A-2B24-11D7-8648000102C1865D
Dreimanis, A and Vagners, UJ (1971) Bimodal distribution of rock and mineral fragments in basal tills. In Goldthwait, RP (ed.), Till, a Symposium, Columbus, Ohio: Ohio State University Press, pp. 237250.
Drewry, D (1986) Glacial Geologic Processes, 1st Edn.Edward Arnold, London.
Eisbacher, GH and Hopkins, SL (1977) Mid-Cenozoic paleogeomorphology and tectonic setting of the St. Elias Mountains, Yukon Territory. In Report of Activities Part B, Geological Survey of Canada, Paper 77-1B.
Enkelmann, E, Piestrzeniewicz, A, Falkowski, S, Stübner, K and Ehlers, TA (2017) Thermochronology in southeast Alaska and southwest Yukon: implications for North American Plate response to terrane accretion. Earth and Planetary Science Letters 457, 348358. doi:10.1016/j.epsl.2016.10.032
Faulkner, DR, Mitchell, TM, Healy, D and Heap, MJ (2006) Slip on ‘weak’ faults by the rotation of regional stress in the fracture damage zone. Nature 444(7121), 922. doi:10.1038/nature05353
Fischer, UH and Hubbard, B (1999) Subglacial sediment textures: character and evolution at Haut Glacier d'Arolla, Switzerland. Annals of Glaciology 28, 241246. doi:10.3189/172756499781821977
Giese, J, and 7 others (2010) Electrodynamic disaggregation: Does it affect apatite fission-track and (U-Th)/He analyses?. Geostandards and Geoanalytical Research 34(1), 3948. doi:10.1111/j.1751-908X.2009.00013.x
Gomez, B, Dowdeswell, JA and Sharp, M (1988) Microstructural control of quartz sand grain shape and texture: implications for the discrimination of debris transport pathways through glaciers. Sedimentary Geology 57(1-2), 119129. doi:10.1016/0037-0738(88)90021-8
Gordey, S and Makepeace, A (1999) Yukon bedrock geology, geological survey of canada open file d3826 and exploration and geological services division, yukon, indian and northern affairs canada, open file 1999-1(d).
Gottlieb, P, and 9 others (2000) Using quantitative electron microscopy for process mineralogy applications. The Journal of The Minerals, Metals & Materials Society (TMS) 52(4), 2425. doi:10.1007/s11837-000-0126-9
Haldorsen, S (1981) Grain-size distribution of subglacial till and its relation to glacial crushing and abrasion. Boreas 10(1), 91105. doi:10.1111/j.1502-3885.1981.tb00472.x
Haldorsen, S (1983) Mineralogy and geochemistry of basal till and their relationship to till-forming processes. Norsk Geologisk Tidsskrift 63(1), 1525.
Hart, JK (2006) An investigation of subglacial processes at the microscale from Briksdalsbreen, Norway. Sedimentology 53(1), 125146. doi:10.1111/j.1365-3091.2005.00758.x
Hart, JK (2017) Subglacial till formation: microscale processes within the subglacial shear zone. Quaternary Science Reviews 170, 2644. doi:10.1016/j.quascirev.2017.06.021
Hasholt, B and Hagedorn, B (2000) Hydrology and geochemistry of river-borne material in a high arctic drainage system, Zackenberg, Northeast Greenland. Arctic, Antarctic, and Alpine Research 32(1), 8494. doi:10.1080/15230430.2000.12003342
Hiemstra, JF and van der Meer, JJM (1997) Pore-water controlled grain fracturing as an indicator for subglacial shearing in tills. Journal of Glaciology 43(145), 446454. doi:10.3189/S0022143000035036
Hooke, RL and Iverson, NR (1995) Grain-size distribution in deforming subglacial tills: role of grain fracture. Geology 23(1), 5760. doi:10.1130/0091-7613(1995)023<0057:GSDIDS>2.3.CO;2
Hooker, JN, Laubach, SE and Marrett, R (2018) Microfracture spacing distributions and the evolution of fracture patterns in sandstones. Journal of Structural Geology 108, 6679. doi:10.1016/j.jsg.2017.04.001
Israel, S and Cobbett, R (2008) Kluane Ranges bedrock geology, White River Area. In Emond, DS, Bradshaw, GD, Lewis, LL and Weston, LH, Yukon Exploration and Geology, 2007, Yukon Geological Survey, Whitehorse, pp. 153157.
Iverson, NR, Hooyer, TS and Hooke, RL (1996) A laboratory study of sediment deformation: stress heterogeneity and grain-size evolution. Annals of Glaciology 22, 167175. doi:10.3189/1996AoG22-1-167-175
Jefferson, IF, Jefferson, BQ, Assallay, AM, Rogers, CDF and Smalley, IJ (1997) Crushing of quartz sand to produce silt particles. Die Naturwissenschaften 84(4), 148149. doi:10.1007/s001140050366
Karlsen, E (1991) Variations in grain-size distribution of suspended sediment in a glacial meltwater stream, Austre Okstindbreen, Norway. Journal of Glaciology 37(125), 113119. doi:10.3189/S0022143000042866
Klein, C and Dutrow, B (2007) Manual of Mineral Science, 23rd Edn., John Wiley & Sons, New Jersey.
Kumar, R, Jefferson, IF, OHara-Dhand, K and Smalley, IJ (2006) Controls on quartz silt formation by crystalline defects. Die Naturwissenschaften 93(4), 185188. doi:10.1007/s00114-006-0087-0
Langroudi, AA, Jefferson, IF, Ohara-Dhand, K and Smalley, IJ (2014) Micromechanics of quartz sand breakage in a fractal context. Geomorphology 211, 110. doi:10.1016/j.geomorph.2013.12.016
Lawn, B (1993) Fracture of Brittle Solids, 1st Edn., Cambridge University Press, Cambridge.
Licht, KJ and Hemming, SR (2017) Analysis of Antarctic glacigenic sediment provenance through geochemical and petrologic applications. Quaternary Science Reviews 164, 124. doi:10.1016/j.quascirev.2017.03.009
Lipovsky, BP, and 6 others (2019) Glacier sliding, seismicity and sediment entrainment. Annals of Glaciology 60(79), 182192. doi:10.1017/aog.2019.24
Ma, G, Zhou, W, Regueiro, RA, Wang, Q and Chang, X (2017) Modeling the fragmentation of rock grains using computed tomography and combined FDEM. Powder Technology 308, 388397. doi:10.1016/j.powtec.2016.11.046
MacDougall, AH, Wheler, BA and Flowers, GE (2011) A preliminary assessment of glacier melt-model parameter sensitivity and transferability in a dry subarctic environment. The Cryosphere 5(4), 10111028. doi:10.5194/tc-5-1011-2011
Marechal, A, Mazzotti, S, Elliott, JL, Freymueller, JT and Schmidt, M (2015) Indentor-corner tectonics in the Yakutat-St. Elias collision constrained by GPS. Journal of Geophysical Research: Solid Earth 120(5), 38973908. doi:10.1002/2014JB011842
Mazzullo, J and Ritter, C (1991) Influence of sediment source on the shapes and surface textures of glacial quartz sand grains. Geology 19(4), 384388. doi:10.1130/0091-7613(1991)019<0384:IOSSOT>2.3.CO;2
Meyer, CR, Downey, AS and Rempel, AW (2018) Freeze-on limits bed strength beneath sliding glaciers. Nature communications 9(1), 3242. doi:10.1038/s41467-018-05716-1
Mills, HG (1977) Textural characteristics of drift from some representative Cordilleran glaciers. Geological Society of America Bulletin 88(8), 11351143. doi:10.1130/0016-7606(1977)88<1135:TCODFS>2.0.CO;2
Moss, AJ (1966) Origin, shaping and significance of quartz sand grains. Journal of the Geological Society of Australia 13(1), 97136. doi:10.1080/00167616608728607
Moss, AJ and Green, P (1975) Sand and silt grains: predetermination of their formation and properties by microfractures in quartz. Journal of the Geological Society of Australia 22(4), 485495. doi:10.1080/00167617508728913
O'Sullivan, PB, Plafker, George and Murphy, JM (1997) Apatite fission-track thermotectonic history of crystalline rocks in the northern Saint Elias Mountains, Alaska. Geological Studies in Alaska by the US Geological Survey: US Geological Survey Professional Paper 1574, 283294.
Paluszny, A, Tang, X, Nejati, M and Zimmerman, RW (2016) A direct fragmentation method with Weibull function distribution of sizes based on finite- and discrete element simulations. International Journal of Solids and Structures 80, 3851. ISSN 0020-7683, doi:10.1016/j.ijsolstr.2015.10.019.
Plafker, G, Hudson, T, Bruns, T and Rubin, M (1978) Late Quaternary offsets along the Fairweather fault and crustal plate interactions in southern Alaska. Canadian Journal of Earth Sciences 15(5), 805816
Rogers, JJW, Krueger, WC and Krog, M (1963) Sizes of naturally abraded materials. Journal of Sedimentary Research 33(3), 628632.
Rose, KC and Hart, JK (2008) Subglacial comminution in the deforming bed: inferences from SEM analysis. Sedimentary Geology 203(1-2), 8797. doi:10.1016/j.sedgeo.2007.11.003
Sammis, CG and Ben-Zion, Y (2008) Mechanics of grain-size reduction in fault zones. Journal of Geophysical Research: Solid Earth 113(B2), 112. doi: 10.1029/2006JB004892
Sharp, M and Gomez, B (1986) Processes of debris comminution in the glacial environment and implications for quarts sand-grain micromorphology. Sedimentary Geology 46(1-2), 3347. doi:10.1016/0037-0738(86)90004-7
Sharp, M, Jouzel, J, Hubbard, B and Lawson, W (1994) The character, structure and origin of the basal ice layer of a surge-type glacier. Journal of Glaciology 40(135), 327340. doi:10.3189/S0022143000007413
Shen, X, Arson, C, Ferrier, KL, West, N and Dai, S (2019) Mineral weathering and bedrock weakening: modeling microscale bedrock damage under biotite weathering. Journal of Geophysical Research: Earth Surface. 124 (11), 26232646. doi: 10.1029/2019JF005068
Slatt, RM and Eyles, N (1981) Petrology of glacial sand: implications for the origin and mechanical durability of lithic fragments. Sedimentology 28(2), 171183. doi:10.1111/j.1365-3091.1981.tb01675.x
Smalley, IJ (1966a) Formation of quartz sand. Nature 211(5048), 476479.10.1038/211476a0
Smalley, IJ (1966b) The properties of glacial loess and the formation of loess deposits. Journal of Sedimentary Research 36(3), 669676.
Snedecor, GW and Cochran, WG (1989) Statistical Methods, 8th Edn.Iowa State Press, Ames.
Tavares, LM and das Neves, PB (2008) Microstructure of quarry rocks and relationships to particle breakage and crushing. International Journal of Mineral Processing 87(1-2), 2841. doi:10.1016/j.minpro.2008.01.007
Torrance, AA (1981) An explanation of the hardness differential needed for abrasion. Wear 68(2), 263266. doi:10.1016/0043-1648(81)90096-X
van der Meer, JJM, Menzies, J and Rose, J (2003) Subglacial till: the deforming glacier bed. Quaternary Science Reviews 22(15-17), 16591685. doi:10.1016/S0277-3791(03)00141-0
Wang, E, Shi, F and Manlapig, E (2012) Factors affecting electrical comminution performance. Minerals Engineering 34, 4854. doi:10.1016/j.mineng.2012.04.011
Weibull, W (1951) A statistical distribution function of wide applicability. Journal of applied mechanics 18(3), 293297.
Wheeler, JO (1963) Geology, Kaskawulsh (Mount Saint Elias, East half), Yukon Territory. Geological Survey of Canada Map, 1134A.
Wilson, NJ and Flowers, GE (2013) Environmental controls on the thermal structure of alpine glaciers. The Cryosphere 7(1), 167182. doi:10.5194/tc-7-167-2013
Wilson, NJ, Flowers, GE and Mingo, L (2013) Comparison of thermal structure and evolution between neighboring subarctic glaciers. Journal of Geophysical Research 118(3), 14431459. doi:10.1002/jgrf.20096
Witus, AE, Branecky, CM, Anderson, JB, Szczuciński, W, Schroeder, DM, Blankenship, DD and Jakobsson, M (2014) Meltwater intensive glacial retreat in polar environments and investigation of associated sediments: example from Pine Island Bay, West Antarctica. Quaternary Science Reviews 85, 99118. doi:10.1016/j.quascirev.2013.11.021
Woodward, JC, Porter, PR, Lowe, AT, Walling, DE and Evans, AJ (2002) Composite suspended sediment particles and flocculation in glacial meltwaters: preliminary evidence from Alpine and Himalayan basins. Hydrological processes 16(9), 17351744. doi:10.1002/hyp.361
Wright, JS (1995) Glacial comminution of quartz sand grains and the production of loessic silt: a simulation study. Quaternary Science Reviews 14(7), 669680. doi:10.1016/0277-3791(95)00048-8
Zobeck, TM, Gill, TE and Popham, TW (1999) A two-parameter Weibull function to describe airborne dust particle size distributions. Earth Surface Processes and Landforms 24(10), 943955. doi:10.1002/(SICI)1096-9837(199909)24:10<943::AID-ESP30>3.0.CO;2-9

Keywords

Type Description Title
PDF
Supplementary materials

Crompton et al. supplementary materials
Crompton et al. supplementary materials

 PDF (651 KB)
651 KB

Characterization of glacial silt and clay using automated mineralogy

  • Jeff W. Crompton (a1), Gwenn E. Flowers (a1) and Brendan Dyck (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.