Skip to main content Accessibility help
×
Home

Characteristics and sources of dissolved organic matter in a glacier in the northern Tibetan Plateau: differences between different snow categories

  • Lin Feng (a1) (a2), Yanqing An (a1), Jianzhong Xu (a1) and Shichang Kang (a1) (a3)

Abstract

Dissolved organic matter (DOM) in mountain glaciers is an important source of carbon for downstream aquatic systems, and its impact is expected to increase due to the increased melting rate of glaciers. We present a comprehensive study of Laohugou glacier no. 12 (LHG) at the northern edge of the Tibetan Plateau to characterize the DOM composition and sources by analyzing surface fresh snow, granular ice samples, and snow pit samples which covered a whole year cycle of 2014/15. Excitation–emission matrix fluorescence spectroscopy analysis of the DOM with parallel factor analysis (EEM-PARAFAC) identified four components, including a microbially humic-like component (C1), two protein-like components (C2 and C3) and a terrestrial humic-like component (C4). The use of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) showed that DOM from all these samples was dominated by CHO and CHON molecular formulas, mainly corresponding to lipids and aliphatic/proteins compounds, reflecting the presence of significant amounts of microbially derived and/or deposited biogenic DOM. The molecular compositions of DOM showed more CHON compounds in granular ice than in fresh snow, likely suggesting newly formed DOM from microbes during snowmelting.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Characteristics and sources of dissolved organic matter in a glacier in the northern Tibetan Plateau: differences between different snow categories
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Characteristics and sources of dissolved organic matter in a glacier in the northern Tibetan Plateau: differences between different snow categories
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Characteristics and sources of dissolved organic matter in a glacier in the northern Tibetan Plateau: differences between different snow categories
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

References

Hide All
And, RMC and Mcknight, DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ. Sci. Technol., 39(21), 81428149
Antony, R and 5 others (2014) Origin and sources of dissolved organic matter in snow on the east Antarctic ice sheet. Environ. Sci. Technol., 48(11), 61516159
Antony, R and 5 others (2016) Microbial communities associated with Antarctic snow pack and their biogeochemical implications. Microbiol. Res., 192, 192202
Antony, R and 7 others (2017) Molecular insights on dissolved organic matter transformation by supraglacial microbial communities. Environ. Sci. Technol., 51(8), 43284337
Barker, JD, Sharp, MJ and Turner, RJ (2009) Using synchronous fluorescence spectroscopy and principal components analysis to monitor dissolved organic matter dynamics in a glacier system. Hydrol. Processes, 23(10), 14871500
Barker, JD, Dubnick, A, Lyons, WB and Chin, YP (2013) Changes in dissolved organic matter (DOM) fluorescence in proglacial Antarctic streams. Arct. Antarct. Alp. Res., 45(3), 305317
Birdwell, JE and Engel, AS (2010) Characterization of dissolved organic matter in cave and spring waters using UV-Vis absorbance and fluorescence spectroscopy. Org. Geochem., 41(3), 270280
Coble, PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem., 51(4), 325346
Coble, PG, Del Castillo, CE and Avril, B (1998) Distribution and optical properties of CDOM in the Arabian Sea during the 1995 southwest monsoon. Deep Sea Res., Part II, 45(10–11), 21952223
Cui, X and 6 others (2014) Chemical characteristics and environmental records of a snow-pit at the glacier no. 12 in the Laohugou Valley, Qilian Mountains. J. Earth Sci., 25(2), 379385
Dittmar, T, Koch, B, Hertkorn, N and Kattner, G (2008) A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr.: Methods, 6(6), 230235
Du, W, Qin, X and Liu, Y (2008) Variation of the Laohugou glacier no. 12 in the Qilian Mountains. Journal of Glaciology & Geocryology, 30(3), 373379
Dubnick, A and 7 others (2010) Characterization of dissolved organic matter (DOM) from glacial environments using total fluorescence spectroscopy and parallel factor analysis. Ann. Glaciol., 51(56), 111122
Fellman, JB, Hood, E and Spencer, RGM (2010) Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol. Oceanogr., 55(6), 24522462
Feng, L and 6 others (2016) Chemical composition of microbe-derived dissolved organic matter in Cryoconite in Tibetan plateau glaciers: insights from Fourier transform ion cyclotron resonance mass spectrometry analysis. Environ. Sci. Technol., 50(24), 1321513223
Feng, L and 8 others (2017) Physical and chemical evolution of dissolved organic matter across the ablation season on a glacier in the central Tibetan Plateau. Biogeosci. Discuss., https://doi.org/10.5194/bg-2017-507
Grannas, AM, Hockaday, WC, Hatcher, PG, Thompson, LG and Ellen, MT (2006) New revelations on the nature of organic matter in ice cores. J. Geophys. Res.: Atmos., 111(D4), 613666
Guo, W and 9 others (2015) The second Chinese glacier inventory: data, methods and results. J. Glaciol., 61(226), 357372
Hockaday, WC, Purcell, JM, Marshall, AG, Baldock, JA and Hatcher, PG (2009) Electrospray and photoionization mass spectrometry for the characterization of organic matter in natural waters: a qualitative assessment. Limnol. Oceanogr.: Methods, 7(1), 8195
Hood, E, Battin, TJ, Fellman, J, O'Neel, S and Spencer, RGM (2015) Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci., 8(2), 9196
Huguet, A and 5 others (2009) Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem., 40(6), 706719
Huss, M (2011) Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resour. Res., 47(7), W07511
Ide, J and 9 others (2017) Spatial variations in the molecular diversity of dissolved organic matter in water moving through a boreal forest in eastern Finland. Sci. Rep., 7, 42102
Koch, B and Dittmar, T (2006) From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Spectrom., 20(5), 926932
Koch, B and Dittmar, T (2016) From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Spectrom., 30(1), 250250
Lafrenière, MJ and Sharp, MJ (2004) The concentration and fluorescence of dissolved organic carbon (DOC) in glacial and nonglacial catchments: interpreting hydrological flow routing and DOC sources. Arct. Antarct. Alp. Res., 36(2), 156165
Lawaetz, AJ and Stedmon, CA (2009) Fluorescence intensity calibration using the Raman scatter peak of water. Appl. Spectrosc., 63(8), 936
Lawson, EC, Bhatia, MP, Wadham, JL and Kujawinski, EB (2014) Continuous summer export of nitrogen-rich organic matter from the Greenland Ice Sheet inferred by ultrahigh resolution mass spectrometry. Environ. Sci. Technol., 48(24), 1424814257
Li, J, Qin, X, Sun, W, Zhang, M and Yang, J (2012) Analysis on micrometeorological characteristics in the surface layer of Laohugou no. 12 in Qilian Mountains. Plateau Meteorol., 31(2), 370379
Li, Q and 6 others (2016) Composition and sources of polycyclic aromatic hydrocarbons in cryoconites of the Tibetan Plateau glaciers. Sci. Total Environ., 574, 991
Liu, Y, Xu, J, Kang, S, Li, X and Li, Y (2016) Storage of dissolved organic carbon in Chinese glaciers. J. Glaciol., 1(232), 15
Lu, Y and 6 others (2015) Use of ESI-FTICR-MS to characterize dissolved organic matter in headwater streams draining forest-dominated and pasture-dominated watersheds. PLoS One, 10(12), e0145639
McLafferty, FW and Turecek, F (1993) Interpretation of mass spectra. University Science Books, Sausalito, CA
Milner, AM and 9 others (2017) Glacier shrinkage driving global changes in downstream systems. Proc. Natl. Acad. Sci. USA, 114(37), 97709778
Mundi, S (2012). Structural and functional characterization of red kidneybean (Phaseolus vulgaris) proteins and enzymatic proteinhydrolysates. University of Manitoba, Canada
Murphy, KR and 6 others (2011) Organic matter fluorescence in municipal water recycling schemes: toward a unified PARAFAC model. Environ. Sci. Technol., 45(7), 29092916
Niu, H and 5 others (2016) Chemical compositions of snow from Mt. Yulong, southeastern Tibetan Plateau. J. Earth Syst. Sci., 125(2), 114
Ohno, T (2002) Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ. Sci. Technol., 36(19), 742746
Parlanti, E, Wörz, K, Geoffroy, L and Lamotte, M (2000) Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org. Geochem., 31(12), 17651781
Spencer, RGM and 6 others (2014) Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on the Tibetan Plateau. Geochim. Cosmochim. Acta, 142(1), 6474
Stedmon, CA and Bro, R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol. Oceanogr.: Methods, 6(11), 572579
Stocker, T and 9 others (2013) IPCC, 2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge Univ. Press, Cambridge, UK, and New York, 1535 pp
Tian, L, Masson-Delmotte, V, Stievenard, M, Yao, T and Jouzel, J (2001) Tibetan plateau summer monsoon northward extent revealed by measurements of water stable isotopes. J. Geophys. Res.: Atmos., 106(D22), 2808128088
Toprak, E and Schnaiter, M (2013) Fluorescent biological aerosol particles measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year field study. Atmos. Chem. Phys., 13(1), 225
Voisin, D and 9 others (2012) Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in barrow. J. Geophys. Res.: Atmos., 117(D14)
Xu, J and 6 others (2013) Seasonal and diurnal variations in aerosol concentrations at a high-altitude site on the northern boundary of Qinghai-Xizang Plateau. Atmos. Res., 120–121, 240248
Xu, JZ and 5 others (2015) Chemical composition and size distribution of summertime PM2.5 at a high altitude remote location in the northeast of the Qinghai-Xizang (Tibet) Plateau: insights into aerosol sources and processing in free troposphere. Atmos. Chem. Phys., 15(9), 50695081
Yan, F and 9 others (2016) Concentration, sources and light absorption characteristics of dissolved organic carbon on a typical glacier, the northeastern Tibetan Plateau. Cryosphere, 10(6), 26112621
Zhang, Y and 7 others (2010) Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude. Limnol. Oceanogr., 55(6), 26452659
Zhang, Y, Liu, S, Shangguan, D, Li, J and Zhao, J (2012) Thinning and Shrinkage of Laohugou no. 12 Glacier in the Western Qilian Mountains, China, from 1957 to 2007. J. Mt. Sci., 9(3), 343350
Zhao, JH (2012) Research on UV/TiO2 photocatalytic oxidation of organic matter in drinking water and its influencing factors. Procedia Environ. Sci., 580–583(Part A), 23582362
Zhou, Y and 5 others (2015) Lake Taihu, a large, shallow and eutrophic aquatic ecosystem in China serves as a sink for chromophoric dissolved organic matter. J. Great Lakes Res., 41(2), 597606

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed