Skip to main content Accessibility help
×
Home

Changing snow cover and the net mass balance of Storglaciären, northern Sweden

  • Eleri Evans (a1), Richard Essery (a2) and Richard Lucas (a1)

Abstract

The spatial and temporal variability of seasonal snow cover in glacierized catchments has important implications for the net mass balance of alpine glaciers. This study examines the relationship between changing snowpack volume, the resulting winter balance and the net mass balance of Storglaciären, northern Sweden. Using a conceptual model, the net seasonal snow input to the glacier is simulated daily for 16 years from 1990. From this the annual snow accumulation and winter balance are calculated. The model outputs are compared with snowlines delineated from classified aerial photographs, ASTER and Landsat 7 ETM+ satellite imagery, and with measured Storglaciären winter balances. The results of the model indicate variability in the winter balance over the study period, though there is a slightly negative trend overall. The highest winter balances and seasonal snow volumes occurred in the early 1990s and correspond with positive net mass balances. However, the slightly negative trend in winter balance and decreased net seasonal snow volumes suggested by the model, combined with the measured increasing trend in mass lost due to ablation, have resulted in decreasing glacier net mass balances and a corresponding rise in ELA over the study period.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Changing snow cover and the net mass balance of Storglaciären, northern Sweden
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Changing snow cover and the net mass balance of Storglaciären, northern Sweden
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Changing snow cover and the net mass balance of Storglaciären, northern Sweden
      Available formats
      ×

Copyright

References

Hide All
Barry, R.G. and Chorley, R.J.. 1987. Atmosphere, weather and climate. Fifth edition. New York, Methuen.
Benn, D.I. and Evans, D.J.A.. 1998. Glaciers and glaciation. London, Arnold.
Braithwaite, R.J. 1995. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling. J. Glaciol., 41(137), 153–160.
Brugger, K.A. 1997. Predicted response of Storglaciären, Sweden, to climatic warming. Ann. Glaciol., 24, 217–222.
Brugger, K.A., Refsnider, K.A. and Whitehill, M.F.. 2005. Variation in glacier length and ice volume of Rabots Glaciär, Sweden, in response to climate change, 1910–2003. Ann. Glaciol., 42, 180–188.
Dowdeswell, J.A. and 10 others. 1997. The mass balance of circum-Arctic glaciers and recent climate change. Quat. Res., (1), 1–14.
Fitzharris, B.B. and Garr, C.E.. 1995. Simulation of past variability in seasonal snow in the Southern Alps, New Zealand. Ann. Glaciol., 21, 377–382.
Haeberli, W., Cihlar, J. and Barry, R.G.. 2000. Glacier monitoring within the Global Climate Observing System. Ann. Glaciol., 31, 241–246.
Hock, R. 1999. A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. J. Glaciol., 45(149), 101–111.
Hock, R. 2003. Temperature index melt modelling in mountain areas. J. Hydrol., 282(1–4), 104–115.
Hock, R. and Holmgren, B.. 1996. Some aspects of energy balance and ablation of Storglaciären, northern Sweden. Geogr. Ann., 78A(2–3), 121–131.
Hock, R. and Holmgren, B.. 2005. A distributed surface energy-balance model for complex topography and its application to Storglaciären, Sweden. J. Glaciol., 51(172), 25–36.
Hock, R. and H., Jensen. 1999. Application of kriging interpolation for glacier mass balance computations. Geogr. Ann., 81A(4), 611–619.
Hock, R. and Noetzli, C.. 1997. Areal melt and discharge modelling of Storglaciären, Sweden. Ann. Glaciol., 24, 211–216.
Hock, R., Radiá, V. and De Woul, M.. 2007. Climate sensitivity of Storglaciären, Sweden: an intercomparison of mass-balance models using ERA-40 re-analysis and regional climate model data. Ann. Glaciol., 46, 342–348.
Holmlund, P. 1987. Mass balance of Storglaciären during the 20th century. Geogr. Ann., 69A(3–4), 439–44.
Holmlund, P. and Jansson, P.. 1999. The Tarfala mass balance programme. Geogr. Ann., 81A(4), 621–631.
Holmlund, P., Karlén, W. and Grudd, H.. 1996. Fifty years of mass balance and glacier front observations at the Tarfala Research Station. Geogr. Ann., 78A(2–3), 105–114.
P., Holmlund, Jansson, P. and Pettersson, R.. 2005. A re-analysis of the 58 year mass-balance record of Storglaciären, Sweden. Ann. Glaciol., 42, 389–394.
Jansson, P. 1999. Effect of uncertainties in measured variables on the calculated mass balance of Storglaciären. Geogr. Ann., 81A(4), 633–642.
Jansson, P. and Pettersson, P.. 2007. Spatial and temporal characteristics of a long mass balance record, Storglaciären, Sweden. Arct. Antarct. Alp. Res., 39(3), 432–437.
Jansson, P., Linderholm, H., Pettersson, R., Karlin, T. and Mörth, C.M.. 2007. Assessing the possibility to couple the chemical signal in winter snow on Storglaciären, Sweden, to atmospheric climatology. Ann. Glaciol., 46, 335–341.
Lehning, M., Doorschot, J. and Bartelt, P.. 2000. A snowdrift index based on SNOWPACK model calculations. Ann. Glaciol., 31, 382–386.
Lemke, P. and 10 others. 2007. Observations: changes in snow, ice and frozen ground. In Solomon, S. and 7 others, eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, etc., Cambridge University Press, 337–383.
Linderholm, H.W. and Jansson, P.. 2007. Proxy data reconstructions of the Storglaciären (Sweden) mass-balance record back to AD 1500 on annual to decadal timescales. Ann. Glaciol., 46, 261–267.
Pohjola, V.A. and Rogers, J.C.. 1997. Coupling between the atmospheric circulation and extremes of the mass balance of Storglaciären, northern Scandinavia. Ann. Glaciol., 24, 229–233.
Schneider, T. and Jansson, P.. 2004. Internal accumulation in firn and its significance for the mass balance of Storglaciären, Sweden. J. Glaciol., 50(168), 25–34.
Trenberth, K.E. and 11 others. 2007. Observations: surface and atmospheric climate change. In Solomon, S. and 7 others, eds. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, etc., Cambridge University Press, 235–336.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed