Skip to main content Accessibility help
×
Home

Calculation of two-dimensional avalanche velocities from optoelectronic sensors

  • Jim N. McElwaine (a1)

Abstract

Optoelectronic sensors using infrared light-emitting diodes and photo-transistors have been used for measuring velocities in snow avalanches for more than 10 years in America, Europe and Japan. Though they have been extensively used, how they should be designed and how the data should be processed has received little discussion. This paper discusses how these sensors can be applied to measure two-dimensional velocities. The effects of acceleration and structure in the underlying field of reflectance are carefully accounted for. An algorithm is proposed for calculating the continuous velocity vector of an avalanche, and a sketch of the mathematical analysis given. The paper concludes by suggesting design criteria for such sensors.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Calculation of two-dimensional avalanche velocities from optoelectronic sensors
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Calculation of two-dimensional avalanche velocities from optoelectronic sensors
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Calculation of two-dimensional avalanche velocities from optoelectronic sensors
      Available formats
      ×

Copyright

References

Hide All
Dent, J.D., Burrell, K. J., Schmidt, D. S., Louge, M.Y., Adams, E. E. and Jazbutis, T. G.. 1998. Density, velocity and friction measurements in a dry-snow avalanche. Ann. Glaciol., 26, 247–252.
Jähne, B. 1997. Digital image processing: concepts, algorithms, and scientific applications. Fourth edition. Berlin, Springer-Verlag.
McElwaine, J.N. and Tiefenbacher, F.. 2003. Calculating internal avalanche velocities from correlation with error analysis. Surv. Geophys., 24(5–6), 499–524.
Nishimura, K., Maeno, N. and Kawada, K.. 1987. [Internal structures of large-scale avalanches revealed by a frequency analysis of impact forces]. Low Temp. Sci., Ser. A, 46, 91–98. [In Japanese with English summary.]
Nishimura, K., Maeno, N., Sandersen, F., Kristensen, K., Norem, H. and Lied, K.. 1993. Observations of the dynamic structure of snow avalanches. Ann. Glaciol., 18, 313–316.

Calculation of two-dimensional avalanche velocities from optoelectronic sensors

  • Jim N. McElwaine (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.