Skip to main content Accessibility help
×
×
Home

Blocking a wave: frequency band gaps in ice shelves with periodic crevasses

  • Julian Freed-Brown (a1), Jason M. Amundson (a2), Douglas R. MacAyeal (a2) and Wendy W. Zhang (a1)

Abstract

We assess how the propagation of high-frequency elastic-flexural waves through an ice shelf is modified by the presence of spatially periodic crevasses. Analysis of the normal modes supported by the ice shelf with and without crevasses reveals that a periodic crevasse distribution qualitatively changes the mechanical response. The normal modes of an ice shelf free of crevasses are evenly distributed as a function of frequency. In contrast, the normal modes of a crevasse-ridden ice shelf are distributed unevenly. There are ‘band gaps’, frequency ranges over which no eigenmodes exist. A model ice shelf that is 50 km in lateral extent and 300 m thick with crevasses spaced 500 m apart has a band gap from 0.2 to 0.38 Hz. This is a frequency range relevant for ocean-wave/ice-shelf interactions. When the outermost edge of the crevassed ice shelf is oscillated at a frequency within the band gap, the ice shelf responds very differently from a crevasse-free ice shelf. The flexural motion of the crevassed ice shelf is confined to a small region near the outermost edge of the ice shelf and effectively ‘blocked’ from reaching the interior.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Blocking a wave: frequency band gaps in ice shelves with periodic crevasses
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Blocking a wave: frequency band gaps in ice shelves with periodic crevasses
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Blocking a wave: frequency band gaps in ice shelves with periodic crevasses
      Available formats
      ×

Copyright

References

Hide All
Ashcroft, NW and Mermin, ND (1976) Solid state physics. Brooks Cole, Belmont, CA
Balmforth, NJ and Craster, RV (1999) Ocean waves and ice sheets. J. Fluid Mech. 395, 89–124
Bromirski, PD and Stephen, R (2012) Response of the Ross Ice Shelf, Antarctica, to ocean gravity waves. Ann. Glaciol., 53(60) (see paper in this issue) (doi: 10.3189/2012AoG60A058)
Chou, T (1998) Band structure of surface flexural–gravity waves along periodic interfaces. J. Fluid Mech., 369, 333–350
Landau, LD and Lifshitz, EM (1986) Theory of elasticity, 3rd edn. Elsevier, Oxford
MacAyeal, DR, Freed-Brown, J, Zhang, WW and Amundson, JM (2012) The influence of ice melange on fjord seiches. Ann. Glaciol., 53(60), 45–49 (doi: 10.3189/2012AoG60A027)
McGrath, D, Steffen, K, Scambos, T, Rajaram, H, Casassa, G and Rodriguez Lagos, J-L (2012) Basal crevasses and associated surface crevassing on the Larsen C ice shelf, Antarctica, and their role in ice-shelf instability. Ann. Glaciol., 53(60), 10–18 (doi: 10.3189/2012AoG60A005)
Mei, CC (1985) Resonant reflection of surface water waves by periodic sandbars. J. Fluid Mech., 152, 315–335 (doi: 10.1017/S0022112085000714)
Scambos, TA, Hulbe, C, Fahnestock, M and Bohlander, J (2000) The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol., 46(154), 516–530 (doi: 10.3189/172756500781833043)
Sheng, P (2006) Introduction to wave scattering, localization and mesoscopic phenomena. Springer, Berlin
Van der Veen, CJ (1998a) Fracture mechanics approach to penetration of surface crevasses on glaciers. Cold Reg. Sci. Technol., 27(1), 31–47
Van der Veen, CJ (1998b) Fracture mechanics approach to penetration of bottom crevasses on glaciers. Cold Reg. Sci. Technol., 27(3), 213–223
Van der Veen, CJ (2002) Calving glaciers. Progr. Phys. Geogr., 26(1), 96–122
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Annals of Glaciology
  • ISSN: 0260-3055
  • EISSN: 1727-5644
  • URL: /core/journals/annals-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed