Skip to main content Accessibility help
×
Home

Attenuation of solar radiation in Arctic snow: field observations and modelling

  • S. Gerland (a1), G. E. Liston (a2), J.-G. winther (a1), J. B. Ørbæk (a1) and B.V. Ivanov (a3)...

Abstract

Solar radiation was measured above and in the snowpack on Svalbard using a spectroradiometer and a quantum meter measuring average photosynthetically active radiation (PAR). In order to specify the effect of melting on the snow’s radiation properties, all measurements were performed before and during the melt season in May and June 1997 and 1998. Along with the radiation measurements, physical and structural snow properties were logged in snow pits. A physically based model was used to simulate the penetration of radiation into the snow The model formulation accounts for the spectrally dependent interactions between the radiation and snow grains, and requires inputs of the incoming solar radiation spectrum and the vertical snow density and grain-size. The vertical radiation-flux profile was computed using a two-stream radiation approximation where the absorption and reflection coefficients are related to the surface albedo, solar spectrum, grain-size and number of grains per unit volume. In general, snow before the onset of melt attenuates solar radiation more than coarser-grained snow that has been exposed to melting conditions. Quantum-meter measurements of PAR before and during melt can be explained by model outputs using both constant and variable extinction coefficients. Spectroradiometer measurements at fixed depth levels showed, in addition, that impurities in the snow reduce its transparency and therefore have the opposite effect to aging.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Attenuation of solar radiation in Arctic snow: field observations and modelling
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Attenuation of solar radiation in Arctic snow: field observations and modelling
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Attenuation of solar radiation in Arctic snow: field observations and modelling
      Available formats
      ×

Copyright

References

Hide All
Brandt, R. E. and Warren, S. G.. 1993. Solar-heating rates and temperature profiles in Antarctic snow and ice. J. Glacial, 39(131), 99110.
Forland, E.J., Hanssen-Bauer, I. and Nordli, P. O.. 1997. Climate statistics and longterm series of temperatures and precipitation at Svalbard and Jan Mayen. Oslo, Det Norske Meteorologiske Institutt. (DNMI Klima Report 21.)
Gerland, S. and 6 others. 1999. Physical and optical properties of snow covering Arctic tundra on Svalbard. Hydrol. Processes, 13(14/15), 23312343.
Grenfell, T. C. and Warren, S. G.. 1999. Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation. J. Geophys. Res., 104(D24), 31,697–31,709.
Grenfell, T. C., Perovich, D. K. and Ogren, J. A.. 1981. Spectral albedos of an alpine snowpack. Cold Reg. Sci. Technol, 4(2), 121127
LaChapelle, E. R. 1992. Field guide to snow crystals. Cambridge, International Glaciological Society.
Leroux, C., Lenoble, J., Brogniez, G, Hovenier, J. .W and de Haan, J. F.. 1998. A model for the bidirectional polarized reflectance of snow. J. Quant. Spectrosc. Radiat. Transfer, 61 (3), 273—285.
Listen, G. E., Winther, J.-G, Bruland, O., Elvehoy, H. and Sand, K.. 1999. Below-surface ice melt on the coastal Antarctic ice sheet. J. Glaciol., 45(150), 273285.
Mellor, M. 1977. Engineering properties of snow. J. Glaciol., 19(81), 1566.
Schlatter, T. W. 1972. The local surface energy balance and subsurface temperature regime in Antarctica. J. Appl. Meteorol, 11(7), 10481062.
Warren, S. G. and Wiscombe, W.J.. 1980. A model for the spectral albedo of snow. II. Snow containing atmospheric aerosols. J. Atmos. Sci., 37(12), 27342745.
Winther, J.–G, Gerland, S., Ørbæk, J. B., Ivanov, B., Blanco, A. and Boike, J.. 1999. Spectral reflectance of melting snow in a high Arctic watershed on Svalbard: some implications for optical satellite remote sensing studies. Hydrol. Processes, 13(12/13), 20332049.
Wiscombe, W J. and Warren, S. G.. 1980. A model for the spectral albedo of snow. I. Pure snow. J. Atmos. Sci., 37(12), 27122733

Attenuation of solar radiation in Arctic snow: field observations and modelling

  • S. Gerland (a1), G. E. Liston (a2), J.-G. winther (a1), J. B. Ørbæk (a1) and B.V. Ivanov (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed