Skip to main content Accessibility help
×
Home

Assessment of snowmelt runoff modelling and isotope analysis: a case study from the western Himalaya, India

  • Rajeev Saran Ahluwalia (a1), S.P. Rai (a1), Sanjay K. Jain (a1), Bhishm Kumar (a2) and D.P. Dobhal (a3)...

Abstract

The major river systems of India, i.e. the Indus, Ganga and Brahmaputra river systems originating in the Himalayan region, are considered the lifeline of the Indian subcontinent. The main sources maintaining the flow of the Himalayan rivers are snow/glacial melt runoff, rainfall runoff and base flow. The Beas River originates from Beas Kund Glacier in the Himalayan region and flows down to join the Sutlej River, which is a tributary of the Indus River system. In the present study two approaches, namely hydrologic modelling and isotope analysis, have been applied to estimate the contribution of snow and glacier melt. Samples of streamflow, rainfall and snow for isotopic analysis were collected daily from April to September and weekly from October to March during 2010 and 2011. The isotope analysis of samples reveals that the snow/glacier melt contribution to the Beas River at Manali is 50% of the total flow during these 2 years. Snowmelt runoff modelling has been carried out using the SNOWMOD model, and the snow/glacier melt runoff contribution is calculated to be 52% of the total flow during the same period. These findings indicate that the results obtained from the two approaches are similar.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Assessment of snowmelt runoff modelling and isotope analysis: a case study from the western Himalaya, India
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Assessment of snowmelt runoff modelling and isotope analysis: a case study from the western Himalaya, India
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Assessment of snowmelt runoff modelling and isotope analysis: a case study from the western Himalaya, India
      Available formats
      ×

Copyright

References

Hide All
Ageta, Y and Kadota, T (1992) Predictions of changes of glacier mass balance in the Nepal Himalaya and Tibetan Plateau: a case study of air temperature increase for three glaciers. Ann. Glaciol., 16, 8994
Behrens, H and 6 others (1979) Models for the runoff from a glaciated catchment area using measurements of environmental isotope contents. In Isotope Hydrology 1978. Proceedings of the International Symposium on Isotope Hydrology, 19–23 June, 1978, Neuherberg, Germany, Vol. 2. International Atomic Energy Agency, Vienna, 829846
Dalai, TK, Bhattacharya, SK and Krishnaswami, S (2002) Stable isotopes in the source waters of the Yamuna and its tributaries: seasonal and altitudinal variations and relation to major cations. Hydrol. Process., 16(17), 33453364 (doi: 10.1002/hyp.1104)
Dinçer, T and Payne, BR (1971) An environmental isotope study of the south-western Karst region of Turkey. J. Hydrol., 14(3–4), 233258 (doi: 10.1016/0022-1694(71)90037-0)
Dobhal, DP, Gergan, JG and Thayyen, RJ (2004) Recession and morphogeometrical changes of Dokriani glacier (1962–1995), Garhwal Himalayas, India. Current Sci., 86(5), 692696
Hall, DK, Riggs, GA and Salomonson, VV (2006) MODIS snow and sea ice products. In Gao, W, Kafatos, M, Murphy, RE and Salomonson, VV eds. Earth science satellite remote sensing, vol. 1: Science and instruments. Tsinghua University Press, Beijing/Springer-Verlag, Berlin
Hewitt, K (2005) The Karakoram anomaly? Glacier expansion and the ‘elevation effect’, Karakoram Himalaya. Mt. Res. Dev., 25(4), 332340 (doi: 10.1659/0276-4741(2005)025[0332:TKA-GEA]2.0.CO;2)
Hooper, RP and Shoemaker, CA (1986) A comparison of chemical and isotopic hydrograph separation. Water Resour. Res., 22(10), 14441454 (doi: 10.1029/WR022i010p01444)
Jain, SK (2001) Snowmelt runoff modeling and sedimentation studies in Satluj basin using remote sensing and GIS. (PhD thesis, University of Roorkee)
Jain, SK, Rai, SP and Ahluwalia, RS (2011) Stream flow modelling of Beas River at Manali, Himachal Pradesh. In Proceedings of National Conference on Recent Advances in Civil Engineering (RACE-2011), 14–16 October 2011, Varanasi, U.P., India. Baranas Hindu University, Varanasi, U.P., 286289
Kulkarni, AV, Rathore, BP, Mahajan, S and Mathur, P (2005) Alarming retreat of Parbati glacier, Beas basin, Himachal Pradesh. Current Sci., 88(11), 18441850
Martinec, J, Siegenthaler, U, Oeschger, H and Tongiorgi, E (1974) New insights into the runoff mechanism by environmental isotopes. In Proceedings of a Symposium on Isotope Techniques in Groundwater Hydrology, 11–15 March 1974, Vienna, Austria. International Atomic Energy Agency, Vienna, 129144
Maulé, CP and Stein, J (1990) Hydrologic flow path definition and partitioning of spring meltwater. Water Resour. Res., 26(12), 29592970 (doi: 10.1029/WR026i012p02959)
Naithani, AK, Nainwal, HC, Sati, KK and Prasad, C (2001) Geomorphological evidences of retreat of the Gangotri glacier and its characteristics. Current Sci., 80(1), 8794
Obradovic, MM and Sklash, MG (1986) An isotopic and geochemical study of snowmelt runoff in a small Arctic watershed. Hydrol. Process., 1(1), 1530 (doi: 10.1002/hyp. 3360010104)
Rai, SP, Kumar, B and Singh, P (2009) Estimation of contribution of southwest monsoon rain to Bhagirathi River near Gaumukh, western Himalayas, India, using oxygen-18 isotope. Current Sci., 97(2), 240245
Ramesh, R and Sarin, MM (1992) Stable isotope study of the Ganga (Ganges) river system. J. Hydrol., 139(1–4), 4962 (doi: 10.1016/0022-1694(92)90194-Z)
Singh, P and Jain, SK (2002) Snow and glacier melt in the Satluj River at Bhakra Dam in the western Himalaya region. Hydrol. Sci. J., 47(1), 93106
Thomas, JK and Rai, SC (2005) An overview of glaciers, glacier retreat and subsequent impacts in Nepal, India and China. Nepal Programme, WWF, Kathmandu

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed