Skip to main content Accessibility help
×
Home

Application of a degree-day model for the determination of contributions to glacier meltwater and runoff near Keqicar Baqi glacier, southwestern Tien Shan

  • Yong Zhang (a1), Shiyin Liu (a1) (a2), Changwei Xie (a1) and Yongjian Ding (a1)

Abstract

A so-called ‘warm and wet transition’ of climate has occurred in the arid part of northwestern China since the late 1980s. A result of this climatic transition is an increase in runoff in Xinjiang and neighboring regions. In a warming and wetting change-of-climate scenario, we attempt to evaluate the impact of glacier meltwater and precipitation on the increase in outlet discharge (runoff) from Keqicar Baqi glacier, southwestern Tien Shan, China. In our research we have applied a degree-day model which is one of the most widely used methods of ice- and snowmelt computations for a multitude of purposes such as hydrological modeling, ice-dynamic modeling and climate sensitivity studies. It is concluded that under the warming and wetting scenario, the primary supply for the runoff in this catchment is glacier meltwater, with precipitation being the dominant secondary source; 84% and 8% of total runoff, respectively.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Application of a degree-day model for the determination of contributions to glacier meltwater and runoff near Keqicar Baqi glacier, southwestern Tien Shan
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Application of a degree-day model for the determination of contributions to glacier meltwater and runoff near Keqicar Baqi glacier, southwestern Tien Shan
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Application of a degree-day model for the determination of contributions to glacier meltwater and runoff near Keqicar Baqi glacier, southwestern Tien Shan
      Available formats
      ×

Copyright

References

Hide All
Ambach, W. 1988. Heat balance characteristics and ice ablation, western EGIG-profile, Greenland. In Thomsen, T., Søgaard, H. and Braithwaite, R.J., eds. Applied hydrology in the development of northern basins. Copenhagen, Danish Society for Arctic Technology, 5970.
Braithwaite, R.J. 1995. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling. J. Glaciol., 41(137), 153160.
Clyde, G.D. 1931. Snow melting characteristics. Utah Agric. Exp. Station Tech. Bull. 231, 123.
Collins, E.H. 1934. Relationship of degree-days above freezing to runoff. EOS Trans., AGU, 15(2), 624629.
Finsterwalder, S. and Schunk, H.. 1887. Der Suldenferner. Zeitschr. Deutsch. u. Österr. Alpenver., 18, 7089.
Han, P., Xue, Y. and Su, H.. 2003. Precipitation signal of the climatic shift in Xinjiang Region. J. Glaciol. Geocryol., 25(2), 172175. [In Chinese with English abstract.]
Hock, R. 1999. A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. J. Glaciol., 45(149), 101111.
Hock, R. 2003. Temperature index melt modelling in mountain areas. J. Hydrol., 282(1–4), 104115.
Hoinkes, H.C. and Steinacker, R.. 1975. Hydrometeorological implications of the mass balance of Hintereisferner, 1952–53 to 1968–69. IAHS Publ. 104 (Symposium at Moscow 1971 – Snow and Ice), 144149.
Hu, R., Jiang, F. and Wang, Y.. 2002. A study on signals and effects of climatic pattern change from warm-dry to warm-wet in Xinjiang. Arid Land Geogr., 25(3), 194200.
Liu, S., Ding, Y., Wang, N. and Xie, Z.. 1998. Mass balance sensitivity to climate change of the Glacier No. 1 at the headwaters of the Ürümqi river, Tianshan mountains. J. Glaciol. Geocryol., 20(1), 913. [In Chinese with English abstract.]
Shi, Y. and 6 others. 2003. Discussion on the present climate change from warm-dry to warm-wet in Northwest China. Quat. Sci., 23(2), 152164. [In Chinese with English abstract.]
Song, L. and Zhang, C.. 2003. Changing features of precipitation over Northwest China during the 20th century. J. Glaciol. Geocryol., 25(1), 136141. [In Chinese with English abstract.]
US Army Corps of Engineers. 1956. Snow hydrology. Summary of report of snow investigations. Portland, OR, North Pacific Division.
US Army Corps of Engineers. 1971. Runoff evaluation and streamflow simulation by computer. Part II. Portland, OR, North Pacific Division.
Wang, S. and Dong, G.R.. 2002. Environmental characteristic of West China and its evolution. In Evolution of environmental evolution of west China (Vol. 1). Beijing, Science Press, 4961. [In Chinese.]
World Meteorological Organization (WMO). 1986. Intercomparison of snowmelt-runoff models. Geneva, World Meteorological Organization. (WMO Hydrological Report 23.)
Xie, W. and Ding, L., eds. Glacier inventory of China. Vol. III. Beijing, Science Press. Academia Sinica, Lanzhou Institute of Glaciology and Geocrylology, 1569. [In Chinese.]
Yang, D., Shi, Y., Kang, E. and Zhang, Y.. 1989. Research on analysis and correction of systematic errors in precipitation measurements in Ürümqi River basin, Tien Shan. In Sevruk, B., ed. Proceedings of International Workshop on Precipitation Measurement. St Moritz, World Meteorological Organization/International Association of Hydrological Sciences/Eidgenössische Technische Hochschule, 173179.
Ye, B., Chen, K. and Shi, Y.. 1996. Ablation function of the glacier in the source of the Ürümqi river. J. Glaciol. Geocryol., 18(2), 139146. [In Chinese with English summary.]
Zhang, G., Wu, S. and Wang, Z.. 2003. The signal of climatic shift in Northwest China deduced from river runoff change in Xinjiang region. J. Glaciol. Geocryol., 25(2), 176180. [In Chinese with English abstract.]
Zhang, Y. 2005. Degree-day model and its application to the simulation of glacier ablation and runoff on Glacier Kequicar Baqi, southwest Tianshan. (Master’s thesis, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences.) [In Chinese.]
Zhang, Y., Liu, S., Han, H., Wang, J., Xie, C. and Shangguan, D.. 2004. Characteristics of climate on Keqicar Baqi Glacier on the south slopes of the Tianshan Mountains during ablation period. J. Glaciol. Geocryol., 26(5), 545550.
Zhang, Y., Liu, S., Shangguan, D., Han, H., Xie, C. and Wang, J.. 2005. Study of the positive degree-day factors on the Koxkar Baqi Glacier on the south slope of Tianshan Mountain. J. Glaciol. Geocryol., 27(3), 337343. [In Chinese with English abstract.]

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed