Skip to main content Accessibility help
×
Home

An equatorward force acting on large floating ice masses: Polfluchtkraft

  • Hermann Engelhardt (a1) and Michael Engelhardt (a2)

Abstract

This study reviews the effects of a force acting upon ice shelves and icebergs arising from the oblateness of the Earth's geoid and the displacement between the center of mass and the center of buoyancy for an object floating on water. The force has been introduced earlier as Polfluchtkraft or ‘pole-fleeing force’ by Alfred Wegener and others in the context of continental drift, but it is here applied to floating ice for the first time. It propels icebergs towards the equator, but also tugs on ice shelves making them more likely to break apart in a warming climate with possible consequences for the entire ice sheet.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      An equatorward force acting on large floating ice masses: Polfluchtkraft
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      An equatorward force acting on large floating ice masses: Polfluchtkraft
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      An equatorward force acting on large floating ice masses: Polfluchtkraft
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

Hide All
Berner, R (1925) Sur la grandeur de la force qui tendrait à rapprocher un continent de l'equateur. Archives des Sciences Physiques et Naturelles, 130(V,7), 247264
Bigg, GR, Wadley, MR, Stevens, DP and Johnson, JA (1996) Prediction of iceberg trajectories for the North Atlantic and Arctic Oceans. Geophys. Res. Lett., 23(24), 35873590
Bigg, GR, Wadley, MR, Stevens, DP and Johnson, JA (1997) Modelling the dynamics and thermodynamics of icebergs. Cold Reg. Sci. Technol., 26(2), 113135
Broecker, WS (1994) Massive iceberg discharge as triggers for global climatic change. Nature, 372, 421424
Death, R, Siegert, MJ, Bigg, GR and Wadley, MR (2006) Modelling iceberg trajectories, sedimentation rates and meltwater input to the ocean from the Eurasian Ice Sheet at the Last Glacial Maximum. Palaeogeogr. Palaeoclimatol. Palaeoecol., 236(1–2), 135150
Dowdeswell, JA, Maslin, MA, Andrews, JT and McCave, IN (1995) Iceberg production, debris rafting, and the extent and thickness of Heinrich layers (H-1, H-2) in North Atlantic sediments. Geology, 23(4), 301304
Elliot, M and 6 others (1998) Millenial-scale iceberg discharges in the Irminger Basin during the last glacial period: relationship with the Heinrich events and environmental settings. Paleoceanography, 13, 433446
Epstein, PS (1921) Über die Polfluchtkraft der Kontinente. Naturwissenschaften, 9(25), 499502
Frezzotti, M, Cimbelli, M and Ferrigno, JG (1998) Ice front change and iceberg behaviour along Oates and George V Coasts, Antarctica, 1912–96. Ann. Glaciol., 27, 643650
Gladstone, RM, Bigg, GR and Nicholls, KW (2001) Iceberg treajectory modeling and meltwater injection in the Southern Ocean. J. Geophys. Res., 106(C9), 1990319915
Hulbe, CL, MacAyeal, DR, Denton, GH, Kleman, J and Lowell, TV (2004) Catastrophic ice shelf breakup as a source of Heinrich Event Icebergs. Paleoceanography, 19, 115
Joughin, I and Alley, RB (2011) Stability of the West Antarctic ice sheet in a warming world. Nat. Geosci., 4, 506513
Joughin, I, Smith, BE and Medley, B (2014) Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science, 344(6185), 735738
Köppen, W (1921) Ursachen und Wirkungen der Kontinentalverschiebungen und Polwanderungen. Petermanns Geogr. Mitt., 67, 145149
Kreichgauer, D (1902) Die Äquatorfrage in der Geologie. Missionsdruckerei, Steyl Kaldenkirchen. p. 50, 61, 243
Lambert, WD (1921) Some mechanical curiosities connected with the earth's field of force. Am. J. Sci., II, 129158
Lang, KR (1980) Astrophysical Formulae. Springer-Verlag, Berlin
Lichey, C and Hellmer, HH (2001) Modeling giant-iceberg drift under the influence of sea ice in the Weddell Sea, Antarctica. J. Glaciol., 47(158), 452460
Løset, S (1993) Thermal energy conservation in icebergs and tracking by temperature. J. Geophys. Res., 98(C6), 1000110012
Losev, KS (1989) Giant icebergs of West Antarctica. Mat. Gliats. Issled., 65, 132
MacAyeal, DR and 5 others (2008) Tabular collision within the coastal regime. J. Glaciol., 54(185), 371386
Mountain, DG (1980) On predicting iceberg drift. Cold Reg. Sci. Technol., 1(3/4), 273282
Neuhaus, SU and MacAyeal, DR (2012) Iceberg drift trajectories follow seafloor spreading features. American Geophysical Union, Fall Meeting 2012, abstract #T41B-2596
Rignot, E and 5 others (2004) Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B Ice Shelf. Geophys. Res. Lett., 31, L18401
Robe, RQ (2012) Iceberg drift and deterioration. In Colbeck, SC ed. Dynamics of snow and ice masses. Academic Press, New York, 211257
Rott, H, Skvarca, P and Nagler, T (1996) Rapid collapse of northern Larsen Ice Shelf, Antarctica. Science, 271(5250), 788792
Rutledge, GK (1988) Monitoring giant Antarctic icebergs. Photogramm. Eng. Rem. Sens., 54(5), 663665
Scambos, T, Sergienko, O, Sargent, A, MacAyeal, D and Fastook, J (2005) ICESat profiles of tabular iceberg margins and iceberg breakups at low latitudes. Geophys. Res. Lett., 32, L23S09
Scambos, T and 8 others (2008) Calving and ice-shelf break-up processes investigated by proxy: Antarctic tabular iceberg evolution during northward drift. J. Glaciol., 54(187), 579591
Scambos, TA, Bohlander, JA, Shuman, CA and Skvarca, P (2004) Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett., 31, L18402
Schodlock, MP, Hellmer, HH, Rohardt, G and Fahrbach, E (2006) Weddell Sea iceberg drift: five years of observations. J. Geophys. Res.: Atmos., 111(C6), C06018
Schweydar, W (1921) Bemerkungen zu Wegeners Hypothese der Verschiebung der Kontinente. Z. Gesellschaft für Erdkunde zu Berlin, 3/4, 120125
Sissala, JS, Sabatini, RR and Ackermann, HJ (1972) Nimbus satellite data for polar ice survey. Polar Rec., 16, 367
Smith, D (1993) Hindcasting iceberg drift using current profiles and wind. Cold Reg. Sci. Technol., 22(1), 3345
Smith, SD and Banke, EG (1983) Influence of winds, currents and towing forces on the drift of icebergs. Cold Reg. Sci. Technol., 6(3), 241255
Swithinbank, C, McClain, P and Little, P (1977) Drift tracks of Antarctic icebergs. Polar Rec., 18, 495501
Tchernina, P and Jeannin, PF (1984) Circulation in Antarctic waters as revealed by iceberg tracks 1972–1983. Polar Rec., 22(138), 263269
v. Eötvös, R (1913) In van de Sande Bakhuyzen HG ed. Verhandlungen der 17. Allgemeinen Konferenz der Internationalen Erdmessung. EJ Brill, Leyde, Part 1, p. 111
Viehoff, T and Li, A (1995) Iceberg observations and estimation of submarine ridges in the Western Weddell-Sea. Int. J. Rem. Sens., 16, 33913408
Vinje, TE (1980) Some satellite-tracked iceberg drifts in the Antarctic. Ann. Glaciol., 1, 8387
Wagner, TJW and 8 others (2014) The ‘footloose’ mechanism: iceberg decay from hydrostatic stresses. Geophys. Res. Lett., 41(15), 55225529
Wagner, TJW, Dell, RW and Eisenman, I (2017) An analytical model of iceberg drift. J. Phys. Oceanogr., 47(6) (doi: 10.1175/JPO-D-16-0262.1)
Wavre, R (1925) Sur la force qui tendrait à rapprocher un continent de l'equateur. Archives des Sciences Physiques et Naturelles, 130(V,7), 163186
Wegener, A (1929) Die Entstehung der Kontinente und Ozeane. Fried. Vieweg & Sohn, Braunschweig
Young, NW, Turner, D, Hyland, G and Williams, RN (1998) Near-coastal iceberg distribution in East Antarctica 50°–145°E. Ann. Glaciol., 27, 6874

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed